

Method for calculating the critical amplitude of the saturation line

Rykov S.V.^{1, @}, Kudryavtseva I.V.² and Rykov V.A.²

¹ Saint Petersburg State University of Industrial Technologies and Design,
Bolshaya Morskaya 18, Saint-Petersburg, 191186, Russia

² ITMO University, Kronvergskiy 49, Saint-Petersburg, 197101, Russia

[@] togg1@yandex.ru

The known correlations for the critical amplitude B_0 of the saturation line (SL) take into account only the dependence of $B_0 = B_0(\beta)$ on the acentric factor ω [1], on the critical index of the SL, β , $B_0 = B_0(\omega)$ and on ω and β simultaneously: $B_0 = B_0(\omega, \beta)$ [2]. These correlations have a fundamental drawback: they do not take into account the experimentally established fact of “mixing” of the critical amplitudes B_0 , when a substance with a large acentric factor ω_I has a critical amplitude B_I smaller than the amplitude B_{II} of a substance with a smaller acentric factor, $\omega_{II} < \omega_I$. The fact of mixing of the B_0 amplitudes can be taken into account if we start from the hypothesis that the critical amplitude of the saturation line is a function of three independent variables: ω , β and the critical compressibility factor, Z_c . The proposed correlation $B_0(\omega, \beta, Z_c) = c_1 + c_2\omega + c_3\beta + c_4Z_c$ was tested on the basis of 36 substances, including UF_6 , sodium, cesium and lithium, for which the literature provides data on $B_0 = B_{0,exp}$ at $3.0 \leq \beta \leq 3.85$ and $-0.39 \leq \omega \leq 0.65$. The amplitudes of UF_6 , sodium, cesium and lithium were determined on the basis of the saturation line equations [3], respectively. The deviations of the experimental values B_0 from those calculated using the correlation $B_0(\omega, \beta, Z_c)$ for almost all of the substances considered do not exceed 6% in absolute value. The only exceptions are He^4 , sodium and lithium, for which these deviations are somewhat higher.

- [1] Perkins R A, Sengers J V, Abdulagatov I M and Huber M L 2013 *Thermophys. Aeromech.* **34** 191–212
- [2] Rykov S and Kudryavtseva I V 2025 *Russ. J. Phys. Chem. A* **99** 659–668
- [3] Apfelbaum E M and Vorobev V S 2015 *J. Phys. Chem. B* **119**(35) 11825–11832