

Evaluating the tungsten and carbon impurity fractions in hydrogen plasmas from the Stark broadening of H_{β} line

**Korolev A.S.^{1,@}, Kutishenko A.V.^{1,2}, Letunov A.Yu.¹,
Loboda P.A.^{1,3} and Novikov A.A.¹**

¹ Federal State Unitary Enterprise "Russian Federal Nuclear Center — All-Russia Research Institute of Technical Physics named after Academician E.I. Zababakhin", Vasilieva str 13, Snezhinsk, 456770, Russia

² Ural Federal University, Lenina Avenue 51, Ekaterinburg, 620000, None

³ National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, Moscow, 115409, Russia

[@] a.s.korolev@vniitf.ru

The analysis of spectral line profiles of neutral hydrogen is actively used to diagnose tokamak divertor plasma [1]. In this paper, reduced mass effect [2] is proposed to be used to estimate the concentration of impurities in the materials of the first wall of the tokamak. Using the theory developed in [3], calibration dependences of the intensity in the center of the H_{β} spectral line on the impurity concentration were obtained and the principal possibility of using the reduced mass effect to estimate the concentration of a homogeneous admixture of tungsten and carbon in the divertor plasma was shown.

- [1] Gorbunov A, Mukhin E, Burgos J M *et al.* 2022 *Plasma Physics and Controlled Fusion* **64**(11)
- [2] Wiese W L, Kelleher D E and Helbig V 1975 *Physical Review A* **11**(6) 1854–1864
- [3] Demura A V, Lisitsa V S and Sholin G V 1977 *Journal of Experimental Physics* **73** 400–401