

The effect of nanoparticles on X-ray generation during irradiation of a solid-state target with an MHz femtosecond laser

Tausenev A.A.^{1, @}, Semenov T.A.¹, Epifanov E.O.¹,
Mareev E.I.¹, Minaev N.V.¹ and Asadchikov V.E.¹

¹ National Research Center “Kurchatov Institute, Kurchatov Square 1, Moscow, 123182, Russia

[@] tausenev94@gmail.com

Modern fiber-based MHz laser systems, such as the ANTAUS-10W-40u/250K (1030 nm, 280 fs, 2 MHz, 20 W), make it possible to generate bright microfocused laser–plasma X-ray sources for microscopy applications [1]. Such sources offer convenient operation under non-vacuum conditions. However, contamination by ablation products affects the operational stability of a microfocused source. It has been established that, when femtosecond laser pulses at MHz repetition rates and an intensity of 10^{14} W/cm² irradiate an iron target, ablation leads to the accumulation of particles with diameters of 4–500 nm in the interaction region. This process results in an exponential decrease in the X-ray output with an attenuation time constant of $t \approx 80$ min.

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2025-458).

[1] Garmatina A, Mareev E, Nikita Minaev N and et al 2023 *Optics Express* **31**(26) 44259–44272