

DETERMINATION OF THE TEMPERATURE OF SPONTANEOUS BOILING-UP OF WATER IN EMULSIONS ON A MICRO-DIMENSIONAL HEATER

**Volosnikov D.V.^{1, @}, Povolotskiy I.I.¹, Antonov D.V.² and
Skripov P.V.¹**

¹ Institute of Thermal Physics of the Ural Branch of the Russian Academy of Sciences, Amundsen Street 107a, Ekaterinburg, 620016, Russia

² National Research Tomsk Polytechnical University, Lenin Avenue 30, Tomsk, 634050, None

[@] dima.volosnikov@mail.ru

Visualization of fast-flowing processes of heating, convection and boiling under conditions of pulsed isothermal action $T_{st}(t-t_1) - T_0 = \text{const}$, where t_1 is the duration of temperature increase of a micro-dimensional wire heater from the initial value T_0 to the experimentally set value T_{st} . The objects of the isothermal exposure study were water, aqueous emulsions of rapeseed oil ether and their mixtures. The subject of the study was the temperature-time range of the instantaneous heat transfer coefficient (MCT) from a miniature heater undisturbed by boiling into the above-listed samples with an initial temperature of T_0 with a step-by-step change in the T_{st} value. It is shown that at atmospheric pressure with the duration of thermal stabilization $t = 1$ s in the case of deionized water, the temperature range $T_{st}(t) - T_0$ undisturbed by boiling corresponds to the degree of overheating relative to the liquid-vapor equilibrium temperature T_s in 70-80 K. Water droplets in vegetable oil emulsions reduce the values of overheating of the starting oil at $t = 100$ ms by 50-200 K in the range of 0.1 – 10 wt. The investigation has been conducted at the expense of a grant of the Russian Science Foundation (project No. 23-69-10006), <https://rscf.ru/project/23-69-10006>