

The titan alloy surface laser ablation treatment

Mkrtychev O.V.^{1,2,®}, Kovaleva M.G.³, Shemanin V.G.⁴
and Turkin V.A.⁴

¹ Moscow State University of Civil Engineering, Yaroslavskoye Shosse 26,
Moscow, 129337, None

² National Research University Moscow Power Engineering Institute,
Krasnokazarmennaya 14, Moscow, 111250, Russia

³ National Research University “Belgorod State University, Pobedy Street 85,
Belgorod, 308015, None

⁴ Novorossiysk Polytechnic Institute of the Kuban State Technical University,
Karl Marx 20, Novorossiysk, 353900, Russia

[®] oleg214@ya.ru

The fiber laser IPG YLM–QCW-100 type with a pulse duration of 0.1-50 ms and the pulse energy up to 15 J with a repetition rate of 20 kHz at the 1070 nm wavelength with a movable platform was used to treat the surface of three titanium alloy samples of dental implants for continuation of our works [1–4]. Laser surface treatment of all three titanium alloy samples were performed at the laser radiation power density of 869 MW/cm². As a result, areas of the sample surface appeared with a pronounced presence of titanium oxide on the surface (the appearance of a golden color) and an increased structurally of the laser-treated surface was observed.

- [1] Kovaleva M G, Yaprятsev M N, Naumov S V, Tagirov D V, Shemanin V G, Sarychev I A and Sarychev P I 2025 *Laser Phys.* **35** 055601
- [2] Atkarskaya A B, Mkrtychev O V, Privalov V E and Shemanin V G 2014 *Optical Memory and Neural Networks (Information Optics)* **23**(4) 265–270
- [3] Privalov V E, Shemanin V G and Mkrtychev O V 2018 *Measurement Techniques* **61**(7) 694–698
- [4] Voronina E I, Efremov V P, Privalov V E and Shemanin V G 2003 *Proceedings SPIE* 5381