

Raman scattering of two-dimensional magnetic transition metal dichalcogenides

Mirzoeva E.T.^{1, @}, Kudryavtsev A.V.¹ and Kartsev A.I.^{1,2}

¹ MIREA—Russian Technological University, Prospekt Vernadskogo 78, Moscow, 119454, None

² Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia

[@] mirzoeva@mirea.ru

The present theoretical study is devoted to first-principles calculations of the magnetic transition metal dichalcogenide (TMD) VS₂ within the framework of density functional theory. VS₂ is a distinctive TMD that exhibits intrinsic room-temperature ferromagnetism and metallic-to-semiconducting behavior depending on the structural phase [1, 2]. Despite the intensive research activity devoted to magnetic TMDs in recent years, driven by their promising prospects for applications in spintronics, straintronics, and optoelectronics, detailed theoretical studies of the Raman spectra of VS₂ as a function of the number of layers are still lacking. Thus, for VS₂ with different numbers of layers, the evolution of the positions of Raman-active vibrational modes, as well as the electronic band structure and magnetic properties, is investigated. Although the trends in Raman peak shifts remain similar as the number of layers changes, each number of layers corresponds to a unique Raman spectrum. Therefore, theoretical studies of Raman spectra not only provide insight into the vibrational properties of this material, but also enable unambiguous interpretation of experimental spectra and reliable determination of the number of layers.

The study was supported by the Russian Science Foundation grant No. 25-79-30019, <https://rscf.ru/project/25-79-30019/>.

- [1] Zhang S, Chang P, Zhang Y, Xu X, Guan L and Tao J 2022 *Journal of Materials Science* **57**(10) 5873–5884
- [2] Jafari M, Rudziński W, Barnaś J and Dyrdal A 2023 *Scientific Reports* **13**(1) 20947