

Study of compressibility of materials used in 3-D printing using synchrotron radiation

**Titiva V.B.¹, Gamov A.L.^{1,2}, Shustova N.I.¹, Spirin I.A.¹,
Ponomarev N.I.^{1,@}, Kuzmin V.S.¹, Tangalicheva A.R.¹,
Pruuel E.R.³, Ten K.A.³, Rubcov I.A.³ and
Studennikov A.A.³**

¹ Federal State Unitary Enterprise “Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, Mira Avenue 37, Sarov, 607188, Russia

² Sarov Institute of Physics and Technology of the National Research Nuclear University Moscow Engineering Physics Institute, Dukhova Street 6, Sarov, 607186, None

³ Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 15, Novosibirsk, 630090, Russia

@ PonomareNI97@yandex.ru

The paper presents the results of a study of the shock wave compressibility Acrylonitrile Butadiene Styrene (ABS), fluoroplasti and photopolymer resin Formalabs “ClearResin”. Compression of samples was carried out by a charge of plastic explosive. The process of compression was recorded using radiography by synchrotron radiation. The study was conducted for validation purposes of EOS of materials used in 3D printing.