

Фундаментальные работы В.Е. Фортова в физике плазмы

Сон Э.Е. (по материалам лекции В.Е.Фортова в МФПИ в 2012 г.)

ПЛАЗМА В ПРИРОДЕ И ТЕХНИКЕ

Солнце

Термояд

Свет

K

VIPS

Пылевые туманности

PRC95-44a · ST Scl OPO · November 2, 1995 J. Hester and P. Scowen (AZ State Univ.), NASA

ИНЕРЦИОННЫЙ ТЕРМОЯДЕРНЫЙ СИНТЕЗ

PULSED-POWER ACCELERATORS WITH Z-PINCH LOADS PROVIDE EFFICIENT TIME COMPRESSION AND POWER AMPLIFICATION

11.5 MJ stored energy
19 MA peak load current
40 TW electrical power to load
100-250 TW x-ray power
1-1.8 MJ x-ray energy

Target Chamber

ВЗРЫВОСТОЙКИЙ КОНТЕЙНМЕНТ С ЛОВУШКОЙ

Взрывостойкость: взрыв 2т. водорода, паровой взрыв 1т. ТНТ

МАКСИМАЛЬНЫЕ ДАВЛЕНИЯ

HE PLASMA GENERATOR

Plasma parameters: P=0,3–6,5 kbar T~0.5–1.5 eV n_e =5 10¹⁵–3 10²⁰ sm⁻³ σ=0.1–250 Ω⁻¹sm⁻¹

Gases: Ar, Xe, He

<u>ИМПУЛЬСНЫЙ ГЕНЕРАТОР АНГАРА-5</u>

RADIATION SCIENCE

 Two 60 MA pinches • 380 MJ yield

Double-ended hohlraum

Z-PINCH-DRIVEN FUSION

• 54 MA pinch • 530 MJ yield

ИЗОЭНТРОПИЧЕСКОЕ СЖАТИЕ СИЛЬНЫМ МАГНИТНЫМ ПОЛЕМ

Релятивистские ионные пучки

detector

SHOCK COMPRESSION+ISOENTROPIC EXPANSION

"TERRA INCOGNITA" OF THE PHASE DIAGRAM AT FAIR

<u>А.Шутов,И.Ломоносов</u>

FAIR WILL OPEN A NEW ROUTE IN HEDP/WDM RESEARCH

•Intense heavy ion beams at FAIR provide unique capabilities for generating and studying HED states in matter:

- SIS-100 intense beam can generate large volume (mm³) homogeneous HED samples
- specific energy of 0.6 MJ/g and deposition power of 12 TW/g at high densities

• unique diagnostic tools: high-energy PW laser and SIS-18 ion beam (ion, proton or x-ray radiography, Thomson scattering)

• high rep. rate, any target material

•Physics program – fundamental properties of matter under extreme conditions: HED regions of Pb EOS accessible at FAIR

- Equation-of-state (EOS) of HED matter
- Phase transitions and exotic states of matter
- Transport and radiation properties of HED matter
- Stopping properties of non-ideal plasma

ИНТЕНСИВНОСТЬ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

ЛАЗЕРНЫЕ УДАРНЫЕ ВОЛНЫ

Diamond anvil target being shot at the Omega laser facility

🗙 Не удается отобразить рисунок.

"РЕНТГЕНОВСКИЕ" УДАРНЫЕ ВОЛНЫ

FEMTOSECOND LASER SYSTEMS at JIHT

Terawatt femtosecond Cr- forsterite laser system 1240 nm; 80 fs; 90 mJ; 10 Hz (made in Russia, has no analogues in the world)

Femtosecond Cr- forsterite laser technological system 1240 nm; 80 fs; 1 mJ;100 ÷ 1000 Hz

Femtosecond Terawatt Ti:Sapphire Laser SystemFemtosecond Kilohertz Ti:Sapphire Laser System800 nm; 40 fs; 10 Hz, to 10 TW800 nm, 30 fs,1 kHz, 2,5 mJ

Фемтосекундная тераваттная "хром – форстерит" лазерная система инфракрасного диапазона спектра излучения изготовлена на базе российских комплектующих изделий.

I_{max} ~ 10¹⁶ W cm⁻² (∅ ≈ 5 μm) **q = 1-10 TW**

Компрессия импульса: вынужденное рассеяние Мандельштама-Бриллюэна вынужденное комбинационное рассеяние

Т³ - ФЕМТОСЕКУНДНЫЕ ТЕРАВАТТНЫЕ ЛАЗЕРЫ

Компрессия импульса: вынужденное рассеяние Мандельштама-Бриллюэна вынужденное комбинационное рассеяние

 $I_{max} \sim 10^{16} \text{ W} \times \text{m}^{-2} \text{ (} \varnothing \approx 5 \ \mu\text{m} \text{)}$

Т³ - ФЕМТОСЕКУНДНЫЕ ТЕРАВАТТНЫЕ ЛАЗЕРЫ

Компрессия импульса: вынужденное рассеяние Мандельштама-Бриллюэна вынужденное комбинационное рассеяние

 $I_{max} \sim 10^{16} \text{ W} \times \text{m}^{-2} \text{ (} \varnothing \approx 5 \ \mu\text{m} \text{)}$

TW FEMTOSECOND CR:FORSTERITE LASER

 $\lambda = 1250 \text{ nm}$ $\tau < 100 \text{ fs}$ E > 100 mJ $W \sim 1 \div 10 \text{ TW}$

Фемтосекундная диагностика неидеальной плазмы при облучении твердой мишени фемтосекундным лазером

ULTRAFAST STRUCTURAL TRANSFORMATIONS OPTICAL ANISOTROPY

The optical anisotropy disappears, when the long-range order of crystalline structure disappears, (melting, amorphous state)

×

Dynamics of ablation

М.Агранат и др

Deformation of metal surface under action of femtosecond pulses, creation of surface nanostructures.

Metamaterial for optical range of spectra (nanostructured gold surface) Nature, Vol 438/17November2005/doi:10.10 38/nature04242

Dynamics of expansion of AI target surface near the ablation threshold ($F=0.95F_{abl}$; $T_L = 100$ fs)

The residual surface deformation of AI

М.Агранат и др

(utrafast imaging interferometry measurements)

НЕРАВНОВЕСНЫЙ НАГРЕВ ЭЛЕКТРОНОВ, СПИНОВ И РЕШЕТКИ

«Горячие» электроны - «холодная» решётка, гидродинамика τ_{ef} ≤ 10⁻¹² с → Лазер: τ ~ 10⁻¹³ - 10⁻¹¹ s, I ~ 10¹⁰ - 10¹³ W·cm⁻²

Ag: $T_e \sim 4.10^3$ K, $T_i < 1000$ K

Потеря оптической анизотропии Кинетика: плавление Zn - < 3 пс рекристаллизация < 100 пс

«Холодные» спины - «горячая» решётка

Высокотемпературный жидкий ферромагнетик (Ni) время жизни ~ 100 - 1000 пс

Реориентация спина ~ 1 пс (TbFeCo)

ELECTRONIC SPECTRUM OF COMPRESSED HYDROGEN

Electron States in compressed plasma

Cassini-Huygens

He CONDUCTIVITY

Плазменные фазовые переходы

<u>СТРУКТУРА НЕЙТРОННОЙ ЗВЕЗДЫ</u>

Образование кварк-глюонной плазмы

деконфайнмент фазовый переход

Deconfinement transition similar to Mott transition (insulator/conductor):

Electron concentration low \rightarrow weak screening of ion potential \rightarrow electrons bound in atoms \rightarrow insulator (nucleus)

Electron concentration high \rightarrow strong screening of ion potential \rightarrow free electrons \rightarrow conductor (QGP = color conductor)

Example: metallic hydrogen in Jupiter

НОВЫЕ СОСТОЯНИЯ ВЕЩЕСТВА ПРИ СЖАТИИ

<u>КОСМИЧЕСКАЯ ШКАЛА ВРЕМЕНИ.</u> РАСШИРЕНИЕ ВСЕЛЕННОЙ ПОСЛЕ БОЛЬШОГО ВЗРЫВА

ВЗРЫВНОЙ СВЧ-ИЗЛУЧАТЕЛЬ

МОЩНЫЙ ВИРКАТОР

3

Мощность - 0.3-1ГВт Длительность - 100нс Длина волны - 4-8см

ВЗРЫВОМАГНИТНЫЕ ГЕНЕРАТОРЫ

- масса ВВ 0,1...1,0 кг
- энергия 5...1000 кДж
- мощность 8...12 ГВт

АВТОНОМНЫЙ ВЗРЫВНОЙ ГЕНЕРАТОР МОЩНОГО СВЧ-ИЗЛУЧЕНИЯ

- пиковая мощность ~ 1 ГВт	
- длительн. имп.	0,1-0,5 мкс
- частота изл.	310 ГГц
- длина	1,5 м
- диаметр	0,4 м

