Научный совет РАН по физике низкотемпературной плазмы

125412, Москва, ул. Ижорская, д.13, стр.2,

Тел. 8(495)484-16-55, e-mail: son.eduard@gmail.com

8(495)485-12-55, e-mail: <u>makhach@mail.ru</u>

ПРОТОКОЛ № 4

Москва

22 октября 2020 г.

Заседание бюро Научного совета

Повестка дня:

- 1. О крупном научном проекте (КНП) Минобрнауки РФ «Энергетика экстремальных состояний вещества», руководитель акад. РАН В.Е. Фортов, докладчик отв.исп. к.ф.-м.н. П.Р. Левашов ОИВТ РАН.
- 2. О работе журнала «Теплофизика высоких температур» в 2020 г. докладчик Заместитель Главного редактора акад. РАН Э.Е. Сон
- 3. Представление проекта ОИВТ РАН «Фундаментальные принципы холодной многофазной неравновесной плазмы и технологии на ее основе», на конкурс грантов РНФ по мероприятию «Проведение исследований научными лабораториями мирового уровня в рамках реализации приоритетов научно-технологического развития Российской Федерации», руководитель проекта Зав. Отделом электрофизики и теплофизики ОИВТ РАН акад. РАН Э.Е. Сон.
- 4. О проведении Российских конференций по физике плазмы в 2020 г. докладчики д.ф.-м.н. Воробьев В.С. (ОИВТ РАН), Лебедев Ю.А. (ИНХС РАН), Кашапов Н.Ф. (КФУ), Василяк Л.М. (ОИВТ РАН), Курнаев В.А. (МИФИ).
- 5. Разное.

Заседание проходило в онлайн-режиме по Zoom.

ПРИСУТСТВОВАЛИ:

Бюро Совета		
1.	Фортов Владимир Евгеньевич	Председатель Совета, д.фм.н.,
		академик РАН, ОИВТ РАН
2.	Сон Эдуард Евгеньевич	1-й зам. председателя, д.фм.н.,
		академик РАН, ОИВТ РАН
3.	Воробьев Владимир Сергеевич	Зам. председателя, д.фм.н., ОИВТ
		PAH
4.	Лебедев Юрий Анатольевич	Зам. председателя, д.фм.н., ИНХС
		PAH
5.	Гаджиев Махач Хайрудинович	Уч.секр., к.фм.н., ОИВТ РАН
6.	Иосилевский Игорь Львович	д.фм.н., ОИВТ РАН
7.	Кашапов Наиль Фаикович	д.т.н., ФГАОУ ВО КФУ
8.	Курнаев Валерий Александрович	д.фм.н., МИФИ
9.	Петров Олег Федорович	д.фм.н., академик РАН, ОИВТ РАН
Члены Совета		
1.	Василяк Леонид Михайлович	д.фм.н., ОИВТ РАН
2.	Левашов Павел Ремирович	к.фм.н., ОИВТ РАН

ВЫСТУПАЛИ:

В.Е. Фортов, П.Р. Левашов, Э.Е. Сон, В.С. Воробьев, Ю.А. Лебедев, Н.Ф. Кашапов, Л.М. Василяк, В.А. Курнаев, О.Ф. Петров.

СЛУШАЛИ:

- 1. В.Е. Фортов с приветственным обращением к членам Совета и основными задачами Совета в настоящее время.
- 2. П.Р. Левашов о крупном научном проекте (КНП) Минобрнауки РФ «Энергетика экстремальных состояний вещества», руководитель акад. РАН В.Е. Фортов.

Конкурсный отбор на представление грантов в форме субсидий на проведение крупных научных проектов по приоритетным направлениям

научно-технического развития В целях реализации программы «Фундаментальные научные исследования для долгосрочного развития и обеспечения конкурентоспособности общества И государства» Российской Федерации государственной программы «Научноразвитие Российской Федерации» технологическое проведен соответствии с Правилами представления из федерального бюджета грантов в форме субсидий на проведение крупных научных проектов по научно-технологического приоритетным направлениям развития, утвержденным постановлением Правительства РФ от 27 декабря 2019 г. №1902. Заявка подавалась от ОИВТ РАН в виде консорциума 10 ОИВТ PAH (участник конкурса), ИПХФ организаций: (соисполнитель), ФГУП «РФЯЦ-ВНИИЭФ» (соисполнитель), ИТФ им. Л.Д. Ландау РАН (соисполнитель), ТГУ (соисполнитель), НИЯУ МИФИ (соисполнитель), ИПФ РАН (соисполнитель), АО «ГНЦ РФ ТРИНИТИ» (соисполнитель), ИОФ РАН (соисполнитель), ФТИ им. А.Ф. Иоффе (соисполнитель).

Задачи проекта

- 1) Исследование механических, структурных, термодинамических, транспортных, оптических свойств веществ и кинетики быстропротекающих процессов в широком диапазоне параметров состояния.
- 2) Теоретические и экспериментальные исследования в области взаимодействия интенсивного импульсного электромагнитного и корпускулярного излучения с веществом, в том числе на установках класса «Mega-Science».
- 3) Исследование теплофизических аспектов горения, детонации и ударно-волновых явлений.
- 4) Теоретические и экспериментальные исследования в области физики и механики деформирования и разрушения с экстремально высокими скоростями.

- 5) Численное моделирование поведения твердотельных, жидких и плазменных состояний вещества.
- 6) Исследование сильнонеидеальной плазмы.
- 7) Приложения физики высоких плотностей энергии в энергетике, материаловедении, астрофизике, геологии и медицине.
- 8) Развитие сетевых банков данных и пакетов прикладных программ по теплофизическим свойствам вещества в экстремальных условиях.
- 9) Развитие параллельных вычислений для решения задач высокоэнергетического воздействия, проведения масштабного численного моделирования воздействия интенсивного лазерного излучения, потоков ионов на вещество, высокоскоростного удара и пробивания, ударных и детонационных волн.
- 3. Э.Е. Сон о работе журнала «Теплофизика высоких температур» о Договоре авторского заказа (ДАЗ) и противоречиях между РАН, обладающей интеллектуальной собственностью на публикуемые статьи, издательством Pleiades Publishing, которому по Договору с издательством Springer рекомендовано издание журналов, принадлежащих Pleiades Publishing. Вмешательство в состав редколлегии, рекомендации по содержанию журнала представляется не обоснованными и редколлегия ТВТ им следовать не рекомендовано. Тем не менее, в настоящее время конкурс на издание журналов РАН выиграла компания «Академкнига», являющаяся дочерней компанией Pleiades Publishing, с которой НИСО РАН и Вице-президент РАН академик А.Р. Хохлов после обсуждений ДАЗ, который рекомендовано Главным представили подписать редакторам редколлегий РАН, в том числе, редколлегии ТВТ.
- 4. Э.Е. Сон о проекте ОИВТ РАН «Фундаментальные принципы холодной многофазной неравновесной плазмы и технологии на ее основе», представленном на конкурс грантов РНФ по мероприятию «Проведение исследований научными лабораториями мирового уровня в рамках реализации приоритетов научно-технологического развития Российской

Федерации». Проект направлен на создание новых плазменных технологий, в первую очередь для создания новых материалов и процессов области преобразования углеводородного топлива, солнечной энергетики, накопителей энергии, ветроэнергетики, различных применений в области электроэнергетики, по которым у коллектива значительный В проекта существует задел. настоящем проекте предполагается создание новых плазменных технологий и дальнейшее их внедрение в энергетических компаниях совместно с Индустриальном партнёром – одной из крупнейших в России научно технологических компаний – AO «ТВЭЛ» Росатома, собственный объем средств, которой составляет 318 млрд. руб., успешно финансирующей инновационные разработки, и которая заинтересована в создании и внедрении новых плазменных технологий, разработанных или планируемых к разработке в области энергоэффективности и ядерной энергетики.

Задачи проекта

1) Экспериментальное и расчетно-теоретическое обоснование нового метода инициирования химических реакций в газовой фазе (плазменная объемная газохимия, CVR -Chemical Volume Reactions) и поверхностная модификация материалов на основе CVD (Chemical Vapour Deposition химическое осаждение из газовой фазы) с использованием электроннопучковой плазмы, создаваемой в сверхзвуковом потоке. Будут проведены экспериментальные исследования электронно-пучковой плазмы для обоснования технологий в газовой и дисперсной фазах в условиях сильной проведены расчетно-теоретические неравновесность, исследования и созданы комплексы программ расчетов функций распределения плазмы в электрических и магнитных полях, до- и сверхзвукового движения плазмы в реакторах на основе электроннопучковой плазмы. обоснованы существующие и разработаны новые плазменные технологии на основе холодной многофазной неравновесной плазмы.

- 2) Теоретическое обоснование плазмохимического синтеза метанола и углеводородов строения C5-C7 из природного и попутного нефтяного газа посредством применения технологий на основе холодной неравновесной плазмы.
- 3) Разработка и создание экспериментальных установок, проведение численного моделирования по распространению электронного пучка в газе, методам вывода пучка в атмосферу, определение рабочей зоны реакций, описание метода и его основных технологических элементов (электронная пушка, сопловой блок и дополнительные инструменты).
- 4) Результаты исследования электрических разрядов в двухфазных газожидкостных средах, разрядов с жидкими электродами постоянного тока, СВЧ, спрей-разрядов и формулировка предложений по плазменным технологиям на их основе.
- 5) Результаты экспериментальных и расчетно-теоретических работ по вводу энергии в газожидкостную среду для инициирования химических реакций, происходящих на границе двух фаз газовой и жидкой, в которых происходят химические реакции в объеме или на поверхности раздела фаз.
- 6) Создание теории и разработка программ численного моделирования плазменных фундаментальных и прикладных задач с многофазными разрядами с жидкими электродами и диспергированными средами методом фазовых полей для турбулентных течений с учётом электрических и магнитных полей на основе осредненных уравнений Навье-Стокса (RANS-Multiphase), методов крупных вихрей (LES-Multiphase) и прямого численного моделирования (DNS-Multiphase).
- 7) Создание стенда для испытаний новых графитовых и тугоплавких материалов с применениями к высокоскоростным летательным аппаратам с меняющейся аэродинамической формой с числами Маха потока от 2 до 6, проведение численного моделирования поведения материалов в высокоскоростных потоках и сравнение экспериментальных и численных

- результатов, рекомендации по использованию новых материалов в ракетно-космической промышленности.
- 8) Получение композиционных металлических материалов аддитивного производства в плазменно-электролитных системах. Использование газовых разрядов с жидкими электродами для получения металлических заданным необходимых элементов, порошков с содержанием требуемыми реологическими свойствами И дисперсным составом необходимым для технологии селективного сплавления. Разработка полимерно-порошковых композиций с различными неорганическими и органическими добавками для использования в процессах селективного лазерного спекания. Разработка металлонаполненных полимерных нитей ДЛЯ использования аддитивной технологии FDM-печати, экспериментальное исследование и моделирование процессов сплавления новых материалов в SLM- и SLS-установках. Создание изделий для новых плазменных технологий.
- 9) Создание моделирования программ численного высокого уровня методами Particle in Cell и плазменных гидродинамических моделей и их реализация на кластерах и суперкомпьютерах для проектирования двигателей, тестирование плазменных ракетных ИХ на использование разработанных экспериментальном стенде, численного моделирования в задачах разработки новых плазменных технологий.
- 10) Рекомендации по использованию результатов проекта в реальном секторе экономики, а также в дальнейших исследованиях и разработках.
- 5. О проведении Российских конференций по физике плазмы в 2020 г. В.С. Воробьев: XLVII МЕЖДУНАРОДНАЯ ЗВЕНИГОРОДСКАЯ КОНФЕРЕНЦИЯ ПО ФИЗИКЕ ПЛАЗМЫ И УПРАВЛЯЕМОМУ ТЕРМОЯДЕРНОМУ СИНТЕЗУ проводилась с 20 по 24 марта 2020 года в обычном очном режиме, из-за пандемии коронавируса программа была урезана и было всего 18 пленарных докладов, 5 докладов было от нашего

Совета ФНТП. В последние годы усилилась роль применения низкотемпературной плазмы, очень большой интерес вызвал доклад Б.Б. Зеленера (ОИВТ РАН) по ультрохолодной плазме. В марте 2021 года планируется XLVIII конференция, формат которой еще не определен.

<u>Н.Ф. Кашапов</u>: Конференция по ФНТП-2020 была перенесена из-за пандемии на 9 ноября, т.к. она поддержана грантом РФФИ, то ее необходимо провести в этом году. Многие участники не могут приехать, особенно иностранные, поэтому конференция пройдет в смешанном режиме с демонстрацией в интернете и обеспечением перевода.

<u>Ю.А.</u> <u>Лебедев</u>: В ближайшее время необходимо разослать информационное письмо о формате и дате проведения конференции ФНТП-2020 всем участникам, особенно иностранцам. Кроме этого в ноябре пройдет симпозиум по плазмохимии.

<u>Л.М.</u> Василяк: XI ВСЕРОССИЙСКАЯ КОНФЕРЕНЦИЯ ПО ФИЗИЧЕСКОЙ ЭЛЕКТРОНИКЕ (ФЭ-2020) пройдет с 26 по 29 октября 2020 года на базе Дагестанского государственного университета, г. Махачкала в смешанном режиме. К началу конференции будет выпущен электронный вариант сборника тезисов докладов.

В.А. Курнаев: Институт Лазерных и плазменных технологий НИЯУ МИФИ приглашает принять участие в работе XII конференции «Современные методы диагностики плазмы и их применение», которая будет проходить с 16 по 18 декабря 2020 года в он-лайн режиме. До начала конференции будет издан электронный вариант тезисов докладов. Лучшие доклады будут отобраны для публикации в журналах «Физика плазмы» и «Ядерная физика и инжиниринг».

ОТМЕТИЛИ:

- 1. Высокую активность членов Научного совета.
- 2. Необходимо создать план работ Научного совета на 2021 г.
- 3. Большой вклад Э.Е. Сона в развитие журнала «Теплофизика высоких температур».

- 4. В РАН появилась возможность финансировать проекты по международному сотрудничеству, поэтому необходимо Научному совету активизироваться в этом направлении.
- 5. Членам Совета до 20 ноября 2020 года представить лауреатов на вручение Диплома «За заслуги в научной и образовательной деятельности в области физики низкотемпературной плазмы» в двух категориях (без ограничения возраста и с ограничением возраста до 39 лет).

РЕШИЛИ:

- 1. Поддержать конференции, проводимые по направлению «Физика низкотемпературной плазмы».
- 2. Поддержать проект ОИВТ РАН «Фундаментальные принципы холодной многофазной неравновесной плазмы и технологии на ее основе», представленной на конкурс грантов РНФ по мероприятию «Проведение исследований научными лабораториями мирового уровня в рамках реализации приоритетов научно-технологического развития Российской Федерации», руководитель проекта Зав. Отделом электрофизики и теплофизики ОИВТ РАН акад. РАН Э.Е. Сон.
- 3. Провести конкурс на вручение Диплома «За заслуги в научной и образовательной деятельности в области физики низкотемпературной плазмы» в двух категориях (без ограничения возраста и с ограничением возраста до 39 лет). Членам Совета направить свои предложения по кандидатам на имя Ученого секретаря Научного совета М.Х. Гаджиева (makhach@mail.ru).

Зам. председателя Научного совета РАН по физике низкотемпературной плазмы

академик Сон Э.Е.