ПРИМЕНЕНИЕ СИНХРОТРОННОГО ИЗЛУЧЕНИЯ ДЛЯ ИССЛЕДОВАНИЯ ДЕФОРМИРОВАНИЯ И РАЗРУШЕНИЯ КОНДЕНСИРОВАННЫХ СРЕД

Зубков П.И.¹, Кулипанов Г.Н.², Лукьянчиков Л.А.¹, Мержиевский Л.А.^{1*}, Тен К.А.¹, Титов В.М.¹, Толочко Б.П.³, Федотов М.Г.², Шарафутдинов М.Р.³, Шеромов М.А.²

¹ИГиЛ СО РАН, Новосибирск, ²ИЯФ СО РАН, Новосибирск, ³ИХТТМ СО РАН, Новосибирск *merzh@hydro.nsc.ru

Анализ возможностей рентгеновского синхротронного излучения (СИ) в исследовании детонационных и ударно-волновых процессов обсуждались в [1]. Там же приведены первые результаты изучения детонационных процессов. В данной работе анализируются особенности применения СИ для исследования деформирования и разрушения инертных материалов. Среди рассматриваемых явлений обсуждаются возможности использования эффекта поглощения излучения (измерение плотности), дифракции на малые углы (малоугловое рассеяние) и обычной брегговской дифракции. Каждый из перечисленных эффектов чувствителен к различным микроструктурным изменениям среды, что позволяет измерить соответствующие характеристики, а все вместе они дополняют друг друга в получении полной картины всех этапов деформирования и разрушения. К достоинствам предлагаемых методов относятся их уникальные возможности по пространственному и временному разрешению и то, что они не вносят возмущений в протекание процессов.

Рассмотренные возможности иллюстрируются на примере исследования процессов сжатия и разрушения сферопластика и полиметилметакрилата. Приводятся полученные данные о структуре волн сжатия и особенностях разрушения первого, о распространении ударных волн и волн разрушения во втором материале. Результаты сравниваются с данными, полученными другими методами. Делается вывод о хороших перспективах предлагаемых методов в исследовании такого класса явлений.

Работа выполнена при финансовой поддержке РФФИ (грант №02-02-16799), программы ведущих научных школ (грант 00-15-96181) и интеграционного гранта СО РАН № 51.

 Алешаев А.Н., Зубков П.И., Кулипанов Г.Н. и др. // ФГВ. 2001. Т.37. №5. С.104–113.