Theoretic and experimental studies of the optical strength of the nanocomposite materials (glass, polymer, fiber optic elements, and so on) in [1-4] have been fulfilled to account for the influence of material physical factors on the optical strength. The results of our experiments in [1, 2] with using Weibull-Gnedenko statistics related to a single irradiation of the sample, can be used to predict the optical strength R of the sample when one is interacted with pulse laser radiation. If the repetition rate of the laser pulses is equal to f, then after time t the total number of pulses is equal to $N = ft$, we obtain the optical strength of the sample at time t:

$$R(F, t) = e^{-\ln 2 \frac{F^m}{F_0^{m/2}} ft}.$$

The parameters F_0, and m are determined from the experimental results and the repetition rate of laser pulses f is an input parameter. Thus, the use Weibull-Gnedenko statistics allows us to predict the polymer nanocomposites optical strength during the time t pulsed radiation with a pulse repetition frequency f (in our case $f = 10$ Hz).