Ablation of metal heated through transparent media

Inogamov N A¹, Zhakhovsky V V², Khokhlov V A¹ and Khishchenko K V³

¹ Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Akademika Semenova 1a, Chernogolovka, Moscow Region 142432, Russia
² Dukhov Research Institute of Automatics (VNIIA), Sushchevskaya 22, Moscow 127055, Russia
³ Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg 2, Moscow 125412, Russia

@ nailinogamov@gmail.com

Action of ultrashort (subps, ps) laser pulse through transparent liquid onto absorbing metal is considered. We use one dimensional two-temperature (2T) hydrodynamics and molecular dynamics to follow evolution of contact boundary separating metal and transparent liquid. Five subsequent studies described are as follows: (i) two-temperature stage lasting few ps; (ii) decay of pressure “jump” between liquid and metal. The decay sharply accelerates contact and produces a shock in liquid and a rarefaction wave in metal; (iii) creation of a heat affected zone (HAZ) during the 2T stage; (iv) multiple nucleation in rather thick zone inside the HAZ and in the tail of rarefaction due to stretching and weakening of cohesive bonds as a result of heating; (v) deceleration of the spallation plate (SP) by inertia of liquid. Thus, on the one hand, the SP is decelerated by displaced liquid volume and on the other hand, the SP is pushed ahead by the flow of the pieces of expanded foam coming to SP from its back (relative to the contact) side.

Histories of pressure, temperature and other parameters are presented.

Work is supported by the Russian Foundation for Basic Research, grant No. 16-08-01181, and the Presidium RAS, program “Thermophysics of high energy densities”.