The quest for asserting pulse-power as the new industrial technology continues in this paper, describing the theory, test, and practice made towards creating viable processes where conventional means or production methods are replaced by pulse-power systems, with improved commercial results. Methods and means described in previous works come together to form practical system for sustained production. Pulse magnetic welding is rated among the best methods for welding tubular parts, and is especially suited for aluminum alloys and for pairs of different metals, but it is also a most intricate one. This paper presents research results of implosive acceleration of tubular details using pulsed magnetic field, and numeric data of real industrial application. Two types of modular pulse current generator designs were developed as well as methods to optimize working coil design. Calculated and measured distribution of magnetic field in various coils and field-shapers was reported in earlier work, and also the influence of coil material on technological results. The work-coils discussed work at industrial regimes, use water-cooling, and reach 50 000 pulses without fail. A method for measuring part speed during deformation was developed, and the speed of part investigated at real processes. The experimental results show good agreement with models, forming a base for industrial process design.