Calculation of the ion stopping in a dense plasma by the Monte Carlo method

Kodanova S K1, Ramazanov T S1, Bastykova N Kh1,\textcopyright, Golyatina R I2 and Maiorov S A2

1 Research Institute of Experimental and Theoretical Physics of the Al-Farabi Kazakh National University, al-Farabi Avenue 71, Almaty 050040, Kazakhstan
2 Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova 38, Moscow 119991, Russia

\textcopyright bastykova@nuriya@physics.kz

The calculation of thermonuclear target parameters for heavy ion inertial fusion requires adequate quantitative description of processes of heavy ion interaction with a dense plasma in a wide range of parameters. Therefore, in order to know the properties of the dense plasma under different conditions, the most attractive way is a computer experiment, which provides answers to many important questions necessary for the use of inertial confinement fusion dense plasma at energy issues. In this paper, Monte Carlo method for simulation of ions trajectories in a dense plasma of inertial confinement fusion is presented. The main advantage of the calculation by the Monte Carlo method is that it allows you to take into account any physical process directly. For example, local and non-local inelastic energy losses, bound energy between atoms replacing collision and so on. The calculation of characteristics of Ti, Fe, Xe ions beam in targets of H, D, T, D–T mixture, Be, Cu are carried out. The result of computer simulation are numerical data on the dynamic characteristics, such as energy loss, penetration depth, the eective range of the particles, stopping and straggling. Also, according to the results of the work was created program of the 3D visualization of the ion trajectories in a dense plasma of inertial confinement fusion. This research was funded under the target program SRW No. 0115PK01011 “Development of informational-program package for modeling and visualization of dense plasma properties in inertial confinement fusion for 2015–2017” from the Ministry of Education and Science of the Republic of Kazakhstan.