CSPH&VD3: The massive-parallel load balancing code for smooth-particle-hydrodynamic modeling of materials in extremes

Egorova M S1,2,4, Dyachkov S A1,4,3, Murzov S A1, Grigoryev S Yu1, Parshikov A N1,4 and Zhakhovsky V V1,2

1 Dukhov Research Institute of Automatics (VNIIA), Sushchevskaya 22, Moscow 127055, Russia
2 Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Akademika Semenova 1a, Chernogolovka, Moscow Region 142432, Russia
3 Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russia
4 Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg 2, Moscow 125412, Russia

@ egorova.maria.serg@gmail.com

Application of well-known parallel algorithms for Lagrangian methods like SPH based on static computational area decomposition leads to weak computational resources balance as the algorithms ignore spatial medium redistribution in problems with free surfaces, continuity losses, and high energy density media flows. To overcome the limitation we developed a high-effective parallel program complex CSPH&VD3 (Voronoi dynamical domain decomposition), which uses dynamic decomposition of modeled samples among computational units (CU) according to distribution of the Voronoi diagram cells built upon the samples [1].

Modeling example of a problem with significant surface shape dynamics and highly inhomogeneous spatial density distribution shows a highly effective resources utilization comparing to static domain decomposition. Tests are provided which prove convergence of VD3 algorithm for systems with initial load imbalance with number of particles up to 10^8 distributed among up to 10^3 CU. Almost perfect linear scalability of VD3 is demonstrated.