The coefficient of electron-ion energy exchange in a nonequilibrium two-temperature electron-ion system of a metal that occurs under the action of ultrashort laser pulses is an important kinetic coefficient, along with the coefficient of electronic heat conduction determining the dynamics of heating a target by a laser pulse. At the same time, the intensity of the laser pulses can be sufficient to melt a metal. An effective approach to calculating the electronic kinetic coefficients in the liquid state is Ziman approach, which uses the relaxation time approximation with allowance for the ionic structure factor for electron-ion scattering. Within this approach, it is possible to obtain both single-temperature and two-temperature (at unequal temperatures of electrons and ions) values of resistivity and electronic thermal conductivity of liquid metals. However, Ziman approach was not applied to the coefficient of electron-ion heat transfer. This paper shows that the Ziman approximation can also be used to calculate the energy exchange between electrons and ions in a liquid metal. We consider aluminum relating to so called simple metals, having only s- and p-electrons being excited under the action of laser irradiation.