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Abstract. A caloric equation-of-state model, which represents the relation of pressure with
density and internal energy, is applied for titanium in the bcc and liquid phases. Thermodynamic
characteristics along the cold-compression curve at T = 0 and Hugoniots are calculated for the
metal and compared with available data from shock-wave experiments at high energy densities.

1. Introduction

Development of new sources of intense pulsed influences on matter (explosives, light-gas guns,
lasers, particle accelerators, high electrical current generators) makes demands of hydrodynamic
simulations of processes at high energy densities [1–12]. Equation of state (EOS) is a necessary
element of such simulations [1]. Consistent theoretical description of material response upon
changing the pressure and the density over a broad region from normal values to those under
extremely high compression or expansion conditions meets insuperable obstacles because of
complex inter-particle interactions in disordered media [13]. Possible model simplifications allow
obtaining results, which are valid in bounded domains only [14–19]. Alternative approach lies
in using semiempirical models [20, 21] those are formulated in the framework of theoretical
considerations whereas the model parameters are determined based on experimental data.

Titanium and its alloys are widely used as structural materials in ships, air- and spacecrafts,
missiles, etc. EOS for the metal is of interest for simulations of various working regimes under
extreme conditions at high mechanical and thermal influences.

In this paper, a semiempirical EOS in a caloric form P = P (V,E) is presented for titanium.
Here, P is the pressure, V = ρ−1 is the specific volume, ρ is the density, E is the specific internal
energy. This EOS provides an adequate description of thermodynamic properties of the metal
in the bcc and liquid-phase states over a wide range of densities and pressures. In contrast to
the previously known EOS models for titanium [22–26], a polynomial form [27] for the curve of
cold compression at T = 0 is used.

2. EOS model

The EOS model is formulated in the general form as

P (V,E) = Pc(V ) +
Γ(V,E)

V
[E − Ec(V )] , (1)



where Ec and Pc = −dEc/dV are the cold components of energy and pressure at T = 0, and Γ
is a coefficient determining the contribution of thermal components of EOS.

The cold interaction energy in the compression region (σc > 1, where σc = V0c/V , V0c is the
specific volume at P = 0 and T = 0) is given by the relation [27]

Ec(V ) = V0ca0 lnσc − V0c
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providing for the condition

Ec(V0c) = 0. (3)

As can be readily seen, derivation of the energy (2) with respect to volume yields an equation for
the pressure Pc(V ), which is analogous to the relation proposed previously [28] as an expansion
of the Thomas–Fermi model in powers of the atomic cell radius rc ∼ σc

−1/3.
The value of coefficient b2 in equation (2) is determined from the condition of coincidence with

the model of degenerate ideal Fermi-gas of non-relativistic electrons [29] at high compression
ratios σc & 103–104,

b2 = Z5/3 1
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a2BEH (AmuV0c)
−5/3 , (4)

where EH is the Hartree energy, aB is the Bohr atomic radius, mu is the atomic mass unit (amu),
A is the atomic mass (in amu), Z is the atomic number of the element.

In order to find the coefficients b1 and ai in equation (2), one need solve the problem of
minimization of the root-mean-square deviation of pressure at some values of volume in the
range σc = 50–103 from the results of calculation using the Thomas–Fermi model with quantum
and exchange corrections [30] taking into account the conditions for the pressure, bulk modulus
and its derivative with respect to pressure at σc = 1:

Pc(V0c) = 0, (5)

Bc(V0c) = −V dPc/dV = B0c, (6)

B′

c(V0c) = dBc/dPc = B′

0c. (7)

The problem of conditional minimization is solved with the introduction of Lagrange factors
[31]. The values of the parameters V0c, B0c and B′

0c are fitted by iterations so as to satisfy
under normal conditions the value of specific volume V0 and the values of isentropic compression
modulus BS = −V (∂P/∂V )S = BS0 and its pressure derivative B′

S = (∂BS/∂P )S = B′

S0
determined from the data of static and shock compressibility measurements.

The energy on the cold curve in the rarefaction region (σc < 1) is given by the polynomial
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which provides for the value of the sublimation energy Ec = Esub at V → ∞ as well as for the
reference condition (5). The requirement to satisfy equations (3), (6) and (7) leaves only two
free parameters (l and n) in equation (8).

The functional dependence of the coefficient Γ upon the volume and internal energy is defined
analogously to the caloric model [31] in the following form:

Γ(V,E) = γi +
γc(V )− γi

1 + σ−2/3 [E − Ec(V )] /Ea

, (9)

where σ = V0/V , γc(V ) corresponds to the case of low thermal energies, and γi characterizes
the region of highly heated condensed substance. The anharmonicity energy Ea, which sets the
thermal energy of a transition from one limiting case to another, is determined from the results
of shock-wave experiments at high pressures.



The volume dependence of the cold component of Γ is defined as [32]

γc(V ) = 2/3 + (γ0c − 2/3)
σ2
n + ln2 σm

σ2
n + ln2(σ/σm)

, (10)

where

γ0c = γi + (γ0 − γi)

[

1 +
E0 − Ec(V0)

Ea

]2

, (11)

E0 and γ0 are the values of specific internal energy and Grüneisen coefficient γ = V (∂P/∂E)V
under normal conditions. The form of γc(V ) ensures validity of the condition γ(V0, E0) = γ0,
and gives the asymptotic value γc = 2/3 in the limiting cases of low and high compression ratios.
The parameters σn and σm are determined from the requirement of optimum fit to experimental
data on shock compressibility of porous samples of a substance in question.

3. EOS for titanium

Titanium under atmospheric pressure appears in two solid phases [33]. Low-temperature α-phase
with hexagonal closed-packed (hcp) structure is stable up to 1155 K; high-temperature β-phase
with body-centered cubic (bcc) structure remains stable up to the melting point at 1941 K. Under
high pressures, more phases of titanium are observed. At the room temperature, the α-phase
transforms to the ω-phase with hexagonal structure at pressures from 2.9 to 14.9 GPa depending
on the compression conditions [34]. Further increase of pressure at the room temperature leads
to transformation of ω to γ-phase with orthorhombic structure at 116±4 GPa [35], 117 GPa [36]
or 128 GPa [37], and of γ to δ-phase with another orthorhombic structure (distorted-bcc) at
135 GPa [36] or 140 GPa [37]. Under higher pressures at room temperature, the δ-phase remains
stable at least up to 200 GPa [36] and even 220 GPa [37]. Melting of the β-phase is studied up
to 120 GPa [38].

Shock compressibility of titanium is investigated with use of traditional explosive systems up
to 0.1 TPa [39–42]. Higher pressures to 0.3 TPa were achieved with special explosive systems [43]
and two-stage gas gun [44]. By use of special construction of explosive flyer-acceleration system,
titanium was loaded in shock waves up to 0.6 TPa [45]. A hemispherical shell explosive device
allowed achieving pressure of 1.3 TPa in the metal [46]. Highest pressure in titanium under
controlled conditions was measured about 13.6 TPa in experiments with strong shock waves
from underground nuclear explosion [47, 48]. Compressibility of porous samples was studied as
well [49].

All early experiments [39,40,43,44] did not show existence of transformation of the α-phase.
First indication of the phase transformation of titanium in shock waves was obtained in detailed
series of measurements [41, 42]. More data in the region of the α–ω phase transformation
of shock-compressed titanium were obtained in experiments [45]. The α–ω transformation of
titanium is analyzed elsewhere [23].

In this work, the data on shock loading of non-porous samples of the metal above 88 GPa
are taken into consideration, which are attributed to the β (bcc) and liquid phases. At that, the
normal density of the metal is taken as a reference value, ρ0 = 4.504 g/cm3.

The EOS coefficients for titanium obtained within the framework of the model are as follows:
V0 = 0.222, V0c = 0.221, a0 = 154.368, a1 = 129 198.249, a2 = −444 895.983, a3 = 733 767.758,
a4 = −659 402.98, a5 = 309 846.579, a6 = −59 693.079, b1 = −12 373.923, b2 = 3399.011,
am = 86.627, an = −0.827, m = 2.075, n = 12, l = 1, Esub = 9.75, γ0c = 1.75, σm = 0.87,
σn = 0.5, γi = 0.45 and Ea = 20. The units of measure correspond to the initial units of
P = 1 GPa, V = 1 cm3/g and E = 1 kJ/g.

Calculated principal Hugoniot of titanium is presented in figure 1 in comparison with data
from experiments [39,40,42–49] over a whole investigated range of shock (Us) and particle (Up)
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Figure 1. The principal Hugoniot of titanium: curve corresponds to the present calculations;
wavy line denotes the boundary above which the bcc and liquid phases are described; markers
correspond to experimental data (I1—[39], I2—[40], I3—[43], I4—[44], I5—[42], I6—[45], I7—
[46], I8—[49], I9—[47,48]).

velocities. A comparison of calculated Hugoniots for samples of different initial porosity ρ0/ρ00
with experimental data [39,40,42–49] is presented in figures 2–4. Here ρ00 is the initial density
of samples.

Calculations of Hugoniots are performed by solving the following equation, which is the law
of energy conservation in the shock-wave front [20]:

E = E0 +
1

2
(P0 + P )(V00 − V ), (12)

where left-hand side is closed by the EOS, E = E(P, V ); E0, P0 and V00 = ρ00
−1 are the initial

values of specific internal energy, pressure and specific volume of samples; E0 = E(P0, V0).
Equation (12) and the EOS determine the specific volume as a function of pressure along the
Hugoniot for samples of initial density ρ00.

The laws of conservation of mass and momentum in the shock-wave front [20] allow calculating
the shock and particle velocities:

Us = V00

√

(P − P0)(V00 − V )−1, (13)

Up =
√

(P − P0)(V00 − V ). (14)

Analysis of the comparison results in figures 1–4 shows that the proposed EOS provides for
a reliable description of the metal properties in wide ranges of shock and particle velocities,
pressures and compression ratios except for the domain of the α and ω phases (region near the
principal Hugoniot below 88 GPa).

Note that the applicability of relation (2) is restricted to the range of non-relativistic motion of
electrons [50]: 5AmuEc/(3Z) ≪ mec

2, where me is the electron mass and c is the speed of light.
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Figure 2. The Hugoniots of titanium samples with different initial porosity (ρ0/ρ00 = 1, 1.12,
1.49, 2, 2.5 and 5.63 for curves top-down respectively): notations are analogous to figure 1.
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Figure 3. The Hugoniots of titanium samples with different initial porosity (ρ0/ρ00): notations
are analogous to figure 1.
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Figure 4. The cold curve (Pc) and Hugoniots of tungsten samples with different initial porosity
(ρ0/ρ00): notations are analogous to figure 1.

This condition can be rewritten as σ2/3 ≪ 2Zmec
2/(5AmuV0cb2), which yields the following limit

of applicability with respect to the compression ratio for the cold curve of titanium obtained in
this study: σ ≪ 106.

It is also needed to note that the pressure Pc derived from relation (2) gives result close to that
from the adapted polynomial expansion in second order for cold EOS of regular solids [51–53].

4. Conclusion

The unified EOS, which has the form of an analytic function, is proposed for titanium in the
bcc and liquid phases. The EOS agrees well with available shock-wave data over a wide range of
pressures and compression ratios and may be used effectively in simulations of physical processes
in the metal under high-energy-density conditions.
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