Hard x-ray focus characterization at the European X-ray Free Electron Laser using a fluorescent crystal detector

Makarov S S^{1,2,@}, Pikuz S A², Pikuz T A^{2,3}, Chernyaev A P¹, Vagovic P⁴, Mikes L⁴, Grunert J⁴, Kujala N⁴, Schropp A⁵, Nagler B⁶, Lee H⁶, David C⁷, Seniutinas G⁷, Bougiatioti P⁷, Chalupsky J⁸, Hajkova V⁸, Burian T⁸, Vozda V⁸, Juha L⁸, Nakatsutsumi M⁴, Zastrau U⁴ and Makita M⁴

 1 Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia

² Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg 2, Moscow 125412, Russia

³ Institute fpr Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

⁴ European XFEL GmbH, Holzkoppel 4, Schenefeld, Hamburg 22869, Germany

 5 Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany

 6 Stanford Linear Accelerator Center, 2575 S
and Hill Rd, Menlo Park, California 94025, United States

⁷ Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland

⁸ Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 182 21, Czech Republic

[@] seomakarov28@gmail.com

Information upon the wavefront of x-ray radiation and its intensity distribution at the focusing point is extremely important for experiments that are carried out using x-ray free electron lasers (XFELs). In our experiments at the European XFEL, the focus of hard x-ray radiation was characterized at a High Energy Density beamline for the first time with using a LiF detector. Two compact refractive lens systems have been tested for achieving of μ m–nm spot size. Due to the high spatial resolution (no less than 0.7 μ m) and dynamic range (no less 10⁶) of the LiF crystal, a real energy distribution of radiation and spot size in focus point were found.