Optimization of laser plasma-based x-ray sources according to warm-dense-matter absorption spectroscopy requirements

Martynenko A $S^{1,@}$, Pikuz S $A^{1,2}$, Skobelev I $Yu^{1,2}$, Ryazantsev S $N^{1,2}$, Baird C^3 , Booth N^4 , Doehl L^3 , Durey P^3 , Faenov A $Ya^{1,5}$, Farley D^3 , Kodama $R^{5,6}$, Lancaster K^3 , McKenna P^7 , Murphy C D^3 , Spindloe C^4 , Pikuz T $A^{1,5}$ and Woolsey N^3

Recently [1], we discussed choosing optimum material and thickness of a target to get a bright x-ray source in the wavelength range of 2-6 Å (2-6 keV) considering relatively low-Z elements suitable for x-ray absorption spectroscopy (XAR) of warm dense matter [2]. In the present work, we demonstrated that the so-called photorecombination region of x-ray characteristic spectral emission is best suited for XAR using a laser-generated x-ray source, due to its featureless spectra of high intensity.

Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskava 13 Bldg 2, Moscow 125412, Russia

² National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, Moscow 115409, Russia

³ York Plasma Institute, Department of Physics, University of York, Church Lane, Heslington, York YO10 5DQ, United Kingdom (Great Britain)

⁴ Central Laser Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom (Great Britain)

⁵ Institute fpr Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

 $^{^6}$ Institute of Laser Engineering, Osaka University, 2-6 Yamada
oka, Suita, Osaka 565-0871, Japan

⁷ University of Strathclyde, Richmond 16, Glasgow G1 1XQ, United Kingdom (Great Britain)

[@] artmarty@mail.ru

^[1] Martynenko A S, Pikuz S A, Skobelev I Y et al 2021 Matter Radiat. Extremes 6 014405

^[2] Bressler C and Chergui M 2004 $\it Chem.~Rev.~{\bf 104}$ 1781–1812