Atomistic simulations of nanoparticle generation by short pulse laser ablation of AgCu bilayers in liquid

Cheng-Yu Shih, Chaobo Chen, Maxim Shugaev, Hao Huang, Leonid Zhigilei

University of Virginia, Department of Materials Science and Engineering

Collaborators:

Bilal Gökce and Stephan Barcikowski, University of Duisburg-Essen, Germany
Wolfgang Kautek, University of Vienna, Austria
Iaroslav Gnilitskyi, NoviNano Lab LLC, Lviv, Ukraine
Emmanuel Stratakis, University of Crete, Heraklion, Greece

Funding support: NSF (DMR-1610936 and CMMI-1663429)

Computational support: OLCF at ORNL (project MAT130), XSEDE (project TG-DMR110090)

University of Virginia

Appalachian Mountains

Founded by Thomas Jefferson in 1819 ~22,000 students, ~2000 academic staff

College of Arts & Sciences School of Engineering & Applied Science School of Architecture Darden School of Business McIntire School of Commerce Curry School of Education School of Law School of Medicine

Graduate programs at UVa Engineering

Monthly news letters with information about fellowships and travel grant opportunities, events, seminars, BBQ or beer parties organized by Graduate Student Board, *etc*.

All graduate students get stipend (~\$26K/year) + health insurance; time to PhD is 3-6 years Can apply after M.S. or B.S. degrees.

Materials Science and Engineering Department:

Strength in Electrochemistry/Corrosion, Physical Metallurgy (phase transformations, crystal defects, alloys), Advanced Material Characterization (TEM/FIB, SEM, STM, ...);

New hires/emerging strength in Additive Manufacturing, Materials Informatics, Soft Matter.

Interested to learn more? Do not hesitate to contact me!

Effect of liquid confinement on surface modification

surface micro/nano-structuring by laser processing in liquids

mechanical confinement + additional cooling channel \rightarrow nonequilibrium microstructure & smoothing of surface morphology

Surface features produced by single shot ablation of Cr (001) target irradiated at 6000 J/m² incident laser fluence in air and water Shih, Gnilitskyi, Shugaev, Skoulas, Stratakis, and Zhigilei, *Nanoscale* **12**, 7674, 2020

Type of the liquid plays a role

5 ps laser processing of Ti in ethanol and water

Barmina *et al.*, *Quant. Electron.* **40**, 1012, 2010

Laser ablation in liquids for synthesis of nanoparticles

synthesis of clean colloidal nanoparticles with unique shapes and functionalities

Wagener et al., Photonik Int. 20, 2011

Sylvestre et al., Appl. Phys. A 80, 758, 2005

clean NPs for biomedicine, catalysis, plasmonics, *etc*.

size, structure and composition of NPs can be controlled by *T*, viscosity of liquid medium, surfactants, PLFL, *etc*.

Marzun et al., Appl. Surf. Sci. 348, 75, 2015

TTM-MD model for laser interaction with metals in liquid environment

TTM-MD model: MD is combined with TTM to account for (1) laser energy absorption by conduction band electrons, (2) electron-phonon equilibration, (3) electronic heat conduction

Coarse-grained model for liquids: heat bath approach accounts for missing degrees of freedom **Acoustic impedance matching boundary conditions:** nonreflective propagation of stress waves

"mosaic" approach to mapping processes occurring at the scale of the whole laser spot

Wu and Zhigilei, *Appl. Phys. A* **114**, 11, 2014. Shugaev *et al.*, *MRS Bull.* **41**, 960, 2016.

Summary on short (fs/ps) pulse laser ablation in liquids

Two mechanisms of NP generation in fs/ps PLAL:

- 1. Rapid nucleation & growth in water-metal mixing region \rightarrow small (\leq 10 nm) NPs
- 2. Rayleigh-Taylor and Richtmyer-Meshkov instabilities at interface between superheated metal layer and water \rightarrow large (10s of nm) NPs

Rapid quenching $(10^{12} \text{ K/s}) \rightarrow \text{NPs}$ with complex microstructure and, possibly, nonequilibrium/metastable phases/structures

Shih et al., J. Phys. Chem. C 121, 16549, 2017
Shih et al., J. Colloid Interface Sci. 489, 3, 2017
Shugaev et al., Appl. Surf. Sci. 417, 54, 2017
Shih et al., Nanoscale 10, 6900, 2018

The effect of pulse duration on nanoparticle generation in PLAL

Shih et al., Phys. Chem. Chem. Phys. 22, 7077, 2020

Spatially modulated ablation in water

Effect of water environment on surface morphology

TEM images of ripple cross-sections and corresponding simulated surface structures

in water

Shih et al., Nanoscale 12, 7674, 2020

Laser ablation of AgCu bilayer thin films in water

Shih et al., J. Phys. Chem. C 125, 2132, 2021

Laser ablation of AgCu bilayer thin films in water

- Rapid deceleration of the ablation plume by water;
- Accumulation of the plume at the interface with water;
- Slower steady upward movement of the interface with a velocity of \sim 35 m/s.
- water is blanked to expose the processes occurring in ablation plume

Stratification of the interfacial region into three parts:

- 1. top region of rapid nucleation and growth of numerous small nanoparticles,
- 2. complex coarse morphology of interconnected liquid regions,
- 3. continuous thin metal layer that retains its integrity up to ~ 2500 ps.

Stratification of the interfacial region into three parts:

- 1. top region of rapid nucleation and growth of numerous small nanoparticles,
- 2. complex coarse morphology of interconnected liquid regions,
- 3. continuous thin metal layer that retains its integrity up to ~ 2500 ps.

Shih et al., J. Phys. Chem. C 125, 2132, 2021

Same qualitative picture, but some quantitative differences related to $G_{Cu} > G_{Au}$:

- 1. less vigorous initial expansion,
- 2. lower *T* of the vapor in the bottom part of the system,
- 3. more numerous large (10s nm) droplets in the upper part of the interfacial region and smaller largest droplet at the lower part of the interfacial region.

Same qualitative picture, but some quantitative differences related to $G_{Cu} > G_{Au}$:

- 1. less vigorous initial expansion,
- 2. lower *T* of the vapor in the bottom part of the system,
- 3. more numerous large (10s nm) droplets in the upper part of the interfacial region and smaller largest droplet at the lower part of the interfacial region.

Same qualitative picture, but some quantitative differences related to $G_{Cu} > G_{Au}$:

- 1. less vigorous initial expansion,
- 2. lower *T* of the vapor in the bottom part of the system,
- 3. more numerous large (10s nm) droplets in the upper part of the interfacial region and smaller largest droplet at the lower part of the interfacial region.

- Limited mixing prior to the formation of the nanoparticles.
- Central parts of the distributions (correspond to well-mixed compositions) are depleted of nanoparticles.
- Limited mixing is surprising, since fluence is ~ 3 times the ablation threshold

Number of atoms in NPs

- Limited mixing prior to the formation of the nanoparticles.
- Central parts of the distributions (correspond to well-mixed compositions) are depleted of nanoparticles.
- Limited mixing is surprising, since fluence is ~ 3 times the ablation threshold

Number of atoms in NPs

- Limited mixing prior to the formation of the nanoparticles.
- Central parts of the distributions (correspond to well-mixed compositions) are depleted of nanoparticles.
- Limited mixing is surprising, since fluence is ~ 3 times the ablation threshold

Christoph Rehbock Anna Tymoczko Ulf Wiedwald Marius Kamp Ulrich Schuermann Lorenz Kienle Stephan Barcikowski

University of Duisburg-Essen Kiel University

Glass/Cu/Ag 39 nm Ag + 40 nm Cu

Glass/Ag/Cu 65 nm Cu + 23 nm Ag

Experimental verification

Experimental verification

Experimental verification

Shih et al., J. Phys. Chem. C 125, 2132, 2021

Nanoparticles larger than film thickness?

Diameters of the largest nanoparticles > thickness of the original bilayer films.

4,813,971 atoms, $D_e = 52.0$ nm, C = 68 at.% Ag

Nanoparticles larger than film thickness?

Accumulation of plume at the interface with water

Formation and decomposition of a transient liquid layer

$\hat{\Gamma}$

Nanoparticles more than twice larger than the thickness of the original bilayer films

3,969,848 atoms, $D_e = 45.9$ nm, C = 20 at.% Ag

Summary

Two surprising observations:

1. Nanoscale spatial separation of the two components in the bilayer leads to a sharp departure from the complete quantitative mixing in the colloidal nanoparticles.

2. The largest nanoparticles can exceed the thickness of the film.

Explained by complex dynamic interaction between the ablation plume and liquid environment: Accumulation of plume at the interface with liquid \rightarrow formation and decomposition of a hot liquid layer that prevents mixing and yields large nanoparticles

Coarse-grained MD representation of liquid environment

Heat bath approach accounts for missing internal degrees of freedom

Tabetah et al., J. Phys. Chem. B 118, 13290, 2014; Shih et al., J. Colloid Interface Sci. 489, 3, 2017

properties of water	experiment	CG model	Δ , %
density, ρ , g/cm ³	1.0	1.0	0
heat capacity, c_p , J/(kg K)	4.2×10^{3}	4.2×10^{3}	0
bulk modulus, <i>K</i> , GPa	2.2	1.8	18
speed of sound, c_s , m/s	1483	1342	9
melting temperature, T_m , K	273	330	21
critical temperature, T_c , K	647	520	20
critical density, ρ_c , g/cm ³	0.322	0.398	24
viscosity, η , cP	0.894	0.910	2
surface energy, σ , J/m ²	0.072	0.073	1

7th Venice International School on Lasers in Materials Science - SLIMS

July 10-18, 2022 Isola di San Servolo, Venice, Italy

http://www.slims.polimi.it/

Symposium on Computer Modeling of Laser and Ion Beam Interactions with Materials

at the 10th International Conference on Multiscale Materials Modeling, Baltimore, Maryland (November 7-11, 2021)

https://mmm10.jhu.edu/symposia/Computer-modeling-of-laser-and.html