

ІИз истории конференциии

Воспоминания участника

Владимир Евгеньевич Фортов

Лев Владимирович Альтшулер

Давид Абрамович Киржниц

Москва Физматлит 2009 год

2 конференции плывут по Енисею лето 1977 г.

Александр Андреевич Самарский Николай Николаевич Яненко

Анатолий Индербиевич Темроков

Конец сентября – начало октября 1978 г. гост. Чегет 1-е рабочее совещание «УРС вещества»

ELBRUS 2021, March 1-5

and the second second

Лето 1980 г. Голубые озера 2-е рабочее совещание «УРС вещества»

Весна 1982 г. гост. Иткол 3-е рабочее совещание «УРС вещества»

Начало января 1984 г. гост. Чегет 4-е рабочее совещание «УРС»

1986 г. База КБГУ

1988 г. и 1990 г. Пансионат «Вольфрам»

Эльбрус, март

Atomic number similarity law in individual electronic shells of all natural elements

G.V. Shpatakovskaya

Outline

- **1.** Basis of the method used
- 2. Algorithm of the method application
- **3.** Experimental data in atomic *K*, *L*, *M* shells
- 4. Experimental and RLDA data in atomic *N*, *O*, *P* shells
- 5. Reconstructed data
- 6. Conclusion

1.1 Basis of the method used

• The quantization condition:

$$S_{n0}(E) = \int \sqrt{2(E - U(r))} dr = \pi n, \text{ if } l = 0;$$

$$S_{nl}(E) = \int \sqrt{2(E - U(r) - \lambda^2/r^2} dr = \pi (n - \lambda)$$

$$E_{nl}(Z) - E_{n0}(Z) \sim \lambda^2, \ \lambda = l + 1/2$$
• Then electron energy levels in **TF** atom are

$$E_{n0}(Z) = Z^{4/3} e(\sigma_n), \ \sigma_n = \pi n Z^{-1/3}, \text{ if } l = 0;$$

$$E_{nl}(Z) = E_{n0}(Z) + Z^{2/3} d(\sigma_n)\lambda^2$$
Where $e(\sigma)$ and $d(\sigma)$ are **universal** functions

1.2 Functions $e(\sigma)$ in TF model for atoms Z = 10 - 92

ELBRUS 2021, March 1-5

2.1 Algorithm for representing experimental electron binding energies (EBE) in atoms

$$e_{n}(\sigma_{n}) = \frac{E_{no}}{Z^{4/3}}, \quad \sigma = \frac{\pi n}{Z^{1/3}},$$
$$d_{nlj}(\sigma_{n}) = \frac{E_{nlj} - E_{no}}{(l+1/2)^{2} Z^{2/3}}, \quad j = l \mp 1/2$$

2.2 Functions $e(\sigma)$, TF and reconstructed from all the experimental s-levels E_{n0} for atoms Z = 10 - 92

ELBRUS 2021, March 1-5

2.3 Functions $e(\sigma)$, TF and reconstructed from all the experimental s-levels E_{n0} for atoms Z = 10 - 92

ELBRUS 2021, March 1-5

2.4 Functions $e(\sigma)$, TF and reconstructed from all the experimental electron s-levels E_{n0} for atoms Z = 10 - 92

22

ELBRUS 2021, March 1-5

2.5 Functions $e(\sigma)$, TF and reconstructed from all the experimental s-levels E_{n0} for atoms Z = 10 - 92

ELBRUS 2021, March 1-5

2.6 Functions $e(\sigma)$, TF and reconstructed from all the experimental *ns*-levels E_{n0} for atoms Z = 10 - 92

ELBRUS 2021, March 1-5

2.6 Functions $e(\sigma)$, TF and reconstructed from all the experimental s-levels E_{n0} for atoms Z = 10 - 92

ELBRUS 2021, March 1-5

2.7 Functions $e(\sigma)$: TF and reconstructed from all the experimental s-levels E_{n0} for atoms Z = 10 - 92

3.1 *K* and *L* shells. Electron binding energies (EBE) in all natural atoms Z = 1 - 92 from experimental data.

ELBRUS 2021, March 1-5

3.2 *M* shell. Experimental EBE in the atomic groups (different color symbols)

ELBRUS 2021, March 1-5

4.1 *N* shell. **Experimental** (color symbols) and **RLDA** (black open symbols) **EBE**

ELBRUS 2021, March 1-5

4.2 *O* shell. **Experimental** (color symbols) and **RLDA** (black open symbols) **EBE**

ELBRUS 2021, March 1-5

4.3 Function *d*(σ) **for experimental EBE in subshells: 3dj, 4dj, 5dj, 4fj**

ELBRUS 2021, March 1-5

5.1 Analytic approximation of experimental curves

32

•
$$\lg |e_n(\sigma)| = \sum_{k=0}^3 a_k^{(n)} \sigma^k$$

• $\lg d_{nlj}(\sigma) = \sum_{k=0}^3 b_k^{(nlj)} \sigma^k$

• $E_{n0}(Z) = Z^{4/3}e_n(\sigma_n), \quad \sigma_n = \pi n Z^{-1/3}, \text{ if } l = 0;$ • $E_{nlj}(Z) = Z^{4/3}e_n(\sigma_n) + Z^{2/3}d_{nlj}(\sigma_n)\lambda^2, \quad \lambda = l + 1/2$

5.2 Analytic EBE estimates in comparison with data from other sources

Z	n	l j	equation (5)	[3]	[4]	[5]
2	1	s	24.52	24.6		24.59
5	1	S	186.8	188.0	186.4 - 187.3	192.2
9	1	S	703.2	696.7	684.0-694.0	692.4
9	2	S	33.24		23.70-33.64	37.21
15	2	S	186.3	189.0	187.7 - 188.0	191.4
		p 1/2	129.7	136.0	130.3	135.1^{a}
		p 3/2	128.9	135.0	129.4 - 130.9	
16	2	s	228.3	231.0	229.2	232.1
		p 1/2	166.0	164.0	162.0 - 166.1	168.1^{a}
		p 3/2	164.3	162.0	162.9-164.8	
31	3	s s	160.1	159.5	161.0	161.0
		p 1/2	107.4	103.5	106.1-108.7	107.1^{a}
		p 3/2	103.9	100.0	104.3-105.8	
48	4	s s	109.4	109.8	109.8	112.4
83	4	S	939.5	939.0	939.0	940.8
76	5	S	87.84	84.0	94.6	87.1
25	5	0	103.2	105.0	0 1.0	194 7

Table 2. Orbital binding energies $|E_{nlj}|$ (eV) estimated by equation (5) in comparison with experimental data from [3–5].

^a Excluding spin-orbit splitting.

Examples of the method application

- Analytic description of experimental *K*, *L* X-ray terms in multi-electron atoms (*Z* > 10) and control their reliability
- Analysis and correction of experimental electron binding energies in lanthanides
- Discovering **patterns** in the measured **first ionization potentials** of **lanthanides and actinides**

<u>6. Conclusions</u>

- 1. The most experimental EBE in the reduced coordinates $e(\sigma)$, $d(\sigma)$ form smooth dependences, that is an atomic number similarity law.
- 2. The **deviation from the law** indicates a measurement error.
- 3. The found **atomic number similarity law** provide a way to **recover missing or erroneous data** with an accuracy ~1%.
- 4. The available theoretical **RLDA model** does not satisfactorily describe the **EBE**.

Thank you for attention!