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Based on the discrete model of the spread of infection in a closed population, the

corresponding form of differential equations with delay is found. It is shown that

the development of the epidemic is determined by four key parameters: the number

of infectious, the average number of dangerous contacts of one infectious person per

day, the the probability of infection due to such contact and the average time during

which the sick person is able to infect. The decision also depends on the size of the

population and the initial number of those infectious agents. The named parameters

have a clear meaning and are related to the well-known concept of the reproductive

number in the continuous SIR and SEIR models. The conditions for saturation of

the epidemic were established by solving the derived differential equations. It is

shown that since the infected remain carriers of the virus for a long time, which is

characteristic of COVID-19, the solutions proposed here differ significantly from the

SIR model.

There are two main kinds of epidemic models: SIS models and SIR (or the extended

SIR model - SEIR models). Models of the first kind refer to the pioneering work of [1] and

assume that people who have recovered can immediately be infected again. SIR models

are built on the assumption that those who have recovered are immune and fall out of the
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epidemic for good (see, e.g., [2]). SIS models are used in mathematical epidemiology [3]. An

overview is given in [4] (see also references therein). The balance between susceptible and

infected members of the population under various conditions of transmission is the subject

of research in [5].

The model under consideration, like the SIR (”susceptible-infected-removed”) and

SEIR(”susceptible-exposed-infected-removed”) models, assumes immunity for recovered

people ( [6], [7], and references therein). However, models like SIR and SEIR allow for

the possibility of immediate recovery, which is highly questionable for COVID-19 disease.

Such a possibility is due to the presence in these models of the time derivative of the num-

ber of infectious people dI/dt which is defined by the term -γI (where γ−1 is the average

duration of disease).

Specificity of the proposed work is that it takes into account some features COVID-19

that follow from the recent discrete epidemic model[8]. Unlike SIR models, the model under

consideration for a closed population has three independent parameters. One of them is

the average duration of the disease d, understood as the length of time during which the

infected person is infected. Another parameter, transmission rate of infection p, is similar to

the number of reproducibility R0 in SIR models. The parameter p is the product of p = nck,

where nc is the average number of dangerous contacts per day for one infected person, and

k is the average susceptibility of a healthy person to the virus.

We consider here closed populations (country, region, city, etc.), because authorities

declare isolation at an early stage of an epidemic. In this case, it is necessary to know the

initial state of the population, namely the number of infected people at the beginning of the

epidemic According to [8], the discrete equations describing the epidemic day by day (like

the official [8] statistics on which we rely) for l > d have the form

NT (l) = NT (l − 1) +NI(l)nc · k[1−NT (l)/N ],

NI(l) = NT (l)−NT (l − d+ 1), (1)

where NI(l) is the number of infected people (carriers of the virus capable of infecting)

on day l and NT (l) is the total number of people infected to day l since the beginning of

the epidemic. At l ≤ d it is assumed that there are no removed (recovered or dead), so

NI(l) = NT (l). The factor nc · k[1 − NT (l)/N ] reflects a gradual change in the parameter

p = nc · k, since it is assumed impossible to infect the infected as well as the removed.
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Figure 1: The total number of infections (thin curves) and the current number of infections (bold

curves) calculated using the discrete model formula (1) for a free-running epidemic in a limited

population as a percentage of its size. Here p = 0.15 (black curves), p = 0.13 (dark gray curves),

p = 0.11 (light gray curves); d = 14 days. Axis x is the day after the first infection, axis y is the

proportion of affected members of the population.

Excluding NI(l) we obtain a nonlinear equation for NT (l)

NT (l) = NT (l − 1) + {NT (l)−NT (l − d+ 1)}nc · k[1− NT (l)

N
], (2)

Figure 1 shows the curves according to equations (1). For the calculations, we used the

initial condition NI(l = 1) = NT (l = 1) = 1 + nck. As follows from Fig. 1, the theory

describes the level of onset of collective immunity depending on characteristic parameters.

It can be rigorously shown that accounting for special quarantine measures is reduced to

replacing in equations (1), (2) nck → nl · k, where the number nl reflects the change in the

average daily number of dangerous contacts due to the adoption or withdrawal of protective

measures.

In equation (2), we can go from discrete time l, to continuous time. To do this, we

denote t = ∆t(l − 1), where ∆t is a unit of time equal to one day, and put NT (l) = x(t)N ,

NT (l)−NT (l − 1) = x′(t)N . Then equation (2) is rewritten as

x′(t) = p[x(t)− θ(t− T )x(t− T )][1− x(t)], (3)

where θ(t) is a Heaviside step function, and T = d− 1. Here it is assumed that time is still

measured in days, i.e., ∆t = 1, otherwise the coefficient p must be renormalized. At the

initial stage of the epidemic 0 ≤ t ≤ T , the equation (3) has the form

x′(t) = px(t)[1− x(t)], (4)
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and its solution is

x0(t) =
εept

εept − ε+ 1
, (5)

where x(0) = ε is determined by the initial fraction of virus carriers in the population that

can infect. The solution (5) is an initial function for equation (3), that is, x(t) = x0(t) at

0 ≤ t ≤ T .

There are two stationary solutions to equation (5), namely, an unstable solution x0(t) = 0

and a stable solution x0(t) = 1, which is the limit x0(t) (5) at the point t → ∞. On

the contrary, the differential equation with delay (3) has an arbitrary stationary solution

x(t) = C for t > T (0 ≤ C ≤ 1). Obviously, for a long time, any solution to equation (3)

tends to some stationary stable saturation value, as shown in Figure 1.

The minimum saturation value can be estimated by linearizing the equation (3) near an

arbitrary stationary solution x(t) = C. Let x(t) = C + δx(t), then the linearized equation

is δx′(t) = p(1 − C)[δx(t) − δx(tT )]. Assuming that δx(t) = exp(λt/T ), we arrive at the

characteristic equation

λ+ (e−λ − 1)Tp(1− C) = 0. (6)

One of the roots of this equation is λ = 0. The other valid root of equation (6) is negative

λ < 0 if Tp(1− C) < 1. In other words, the stationary solution x(t) = C is stable if

C >

 0, Tp ≤ 1

1− 1

Tp
, Tp > 1

(7)

Consequently, the saturation value x∞(p) = limt→∞ x(t) must exceed the value given by

equation (7). Figure 2 shows the dependence of the asymptotic value of the solution of

Eq. (3) on pT calculated for two values of the initial perturbation, ε = 10−6 (curve 1)

and ε = 5 · 10−2 (curve 2). If pT < 1, there is no significant increase in epidemics. For large

values of pT , the saturation level is always greater than the value given by equation (7), and

tends to unity at pT � 1. For sufficiently small values of ε� 1, the function x∞(p) tends to

a universal curve independent of the initial perturbation (e.g., curve 1 in Fig. 2). However,

the time required to reach the saturation value depends on the initial perturbation.

Examples of epidemic growth calculated using the proposed model (3) and the SIR model

(see, for example, [7]) are shown in Fig. 2. For a sufficiently small initial perturbation ε,

the SIR model predicts about twice the saturation time.
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Figure 2: Dependence of the saturation level of the epidemic x∞ on pT . Curve 1 — ε = 10−6,

curve 2 — ε = 5 · 10−2, curve 3 is given by equation (7).
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Figure 3: Comparison of two models. Curve 1 is calculated according to the SIR model (see, for

example, [7]), curve 2 is a delayed equation (3). Selected parameters ε = 10−5, p = 0, 1, T = 13.

As already mentioned, there are an infinite number of stationary states of equation with

delay (3). On the contrary, there is only one root of equation F (x1) = 0, which can be

written as x1(ε, pT ) = 1 + W
(
−pTe−pT (ε+1)

)
/(pT ), where W (z) is the Lambert function

(see, e.g., [10]). It is easy to check that the stationary state is stable, i.e. F ′(x1) > 0. It was

found numerically that, for a sufficiently small value of the initial perturbation ε � 1, the

saturation levels given by both models are practically equal.

To describe the real course of the epidemic, we need to better know the characteristics of

COVID-19. In view of this, here, instead of a SIR-type model based on ordinary differential

equations, the delayed differential equation is obtained that takes into account the duration

of the COVID-19 disease.
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Here we restrict ourselves to closed populations (country, region, city, etc.). Of course,

there is a constant exchange between populations. However, at an early stage of the epi-

demic, the authorities use restrictive measures to reduce such flows to a minimum. Pre-

quarantine cross-border transmission cannot be accurately calculated. This initial stage of

the epidemic can named a free-flowing epidemic. The impact of the flow of people between

regions on the epidemic is a separate task that can be considered, in particular, using the

model proposed here.

A significant novelty of the obtained results is also the assessment of the effects of quar-

antine measures through an ”external impact function” on the epidemic nl (p(l)). The role

of the various quarantine measures and the quantification of their impact is still unclear and

debated. Nevertheless, the model under consideration makes it possible to find this function

at the beginning of an epidemic by back-calculating [8] from the available discrete statistics

[9]. In this way, it is possible to estimate the impact of quarantine measures for individual

regions and countries in general, since the dates and rules of administrative restrictions are

known.

We also show and investigate the emergence of collective immunity under quarantine

conditions. This is a property of the deterministic model with the delay process of transition

from the subset of carriers V to the subset of cured individuals R, which is not present in the

known SIR and SEIR models and their modifications. This delay is a characteristic feature

of COVID-19. It has been shown that this type of collective immunity can be maintained

at a relatively low level. The theory presented can describe the entire epidemic process,

including the new waves of COVID-19 infections currently observed and the periodic change

in the balance between quarantine measures and reduction of quarantine restrictions.
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