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The asymptotic behavior of the equilibrium radiation in Maxwellian plasma

is investigated for the region of low frequencies. It is shown, that already for a

weakly non-ideal plasma the equilibrium radiation can essentially deviate from

the Planck law. The deviation from the Planck distribution is described by the

transverse dielectric permittivity which takes into account both frequency and

spatial dispersion. The influence of plasma non-ideality increases with increase

of the non-ideality parameter in the dielectric permittivity. The spectral energy

distribution of the equilibrium radiation essentially changes in the region of possibly

observable frequencies. At asymptotically low frequencies there is transfer from

logarithmic to power behavior of the equilibrium radiation. The results indicate

that in the primordial plasma of Early Universe the spectral energy distribution of

radiation could be different than the Planck one.
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Introduction

The spectral energy distribution of the equilibrium radiation established by M. Planck

[1] corresponds to an idealized model of an absolutely black body, which exists in a cavity

filled with radiation and bounded by an absolutely absorbing substance. It is assumed that

the radiation is in thermodynamic equilibrium with the substance, although the effects of
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the interaction of photons with the substance bounding the cavity are not considered [2].

The practical implementation of the Planck distribution, as a rule, is associated with

the consideration of a macroscopic body in thermal equilibrium with the ”black” radiation

surrounding it [2]. Great success has been achieved in solving this problem, which is directly

related to Kirchhoffs law (see in more detail [3-5] and the literature cited there). At the same

time, lack of attention has been paid to the question of the spectral energy distribution of

equilibrium radiation (SEDER) in a substance (see [6] and the literature cited there). The

solution of this problem was mainly restricted to the analysis of transparency regions at

low photon momentum. This approach seems to be limited, since it is clear from physical

considerations that in order to establish the thermodynamic equilibrium of radiation in

matter, it is necessary to take into account the effects of radiation absorption.

Recent investigations have been devoted to the sequential consideration of the effect

of an absorbing plasma medium on the spectral energy density of equilibrium radiation

(SEDER) in a substance [7-9]. In these works, the consideration was carried out both for a

completely equilibrium system of non-relativistic charged particles and photons [7,8] in the

quantum electrodynamic (QED) approximation, and based on a generalization of a more

traditional approach using the fluctuation-dissipation theorem [9]. In [10, 11], based on [7,

8], the frequency-asymptotic behavior of SEDER was studied. It was found that at low

frequencies the SEDER in a plasma medium has a logarithmic (integrable) singularity. In

this case, the radiation energy remains finite. However, the works [10, 11] were based on

the part of the SEDER that is related to the influence of plasma on the photon distribution

function through the transverse permittivity of charged particles. At the same time, as

was shown in [12], there is one more contribution to the SEDER, which must be taken

into account. This contribution is related to the interaction between intrinsic fluctuations

of currents and fields and leads to a contribution of the same order as the one considered

earlier. Below, when calculating the low-frequency behavior of SEDER, we use the general

approach developed in [10]. The analytical asymptotic based on this approach changes

the logarithmic low-frequency asymptotic singularity on more singular, but still integrable

1/ω2/3. For simplicity, we restrict ourselves to the consideration of radiation in an electron

gas.
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I. GENERAL FORMULAE FOR THE SEDER IN ELECTRON GAS

According to [12], the full SEDER in plasma medium E(ω), which includes the zero

fluctuations in plasma is the sum of two terms

E(ω) = E(1)(ω) + E(2)(ω) (1)

E(1)(ω) =
V h̄ω3

π2c3
coth

(
h̄ω

2T

)
c5

πω

∫ ∞

0

dkk4 Imεtr(k, ω)

(ω2Reεtr(k, ω)− c2k2)2 + ω4(Imεtr(k, ω))2
, (2)

E(2)(ω) = V
∑
a

h̄ω2ω2
p,a coth

(
h̄ω
2T

)
π3

∫ ∞

0

dkk2 Imεtr(k, ω)

| ω2εtr(k, ω)− k2c2 |2
(3)

Here εtr(k, ω) is the transverse dielectric permittivity (TDP) of non-relativistic plasma,

which takes into account spatial and frequency dependence of electromagnetic field as well

as arbitrary strong interaction between charged particles in the system. However, the TDP

for strongly interacted plasma is unknown and we use for further calculations the most

accurate form of TDP for the case of a weak Coulomb interaction between charged particles

in quasiclassial and quasineutral plasma medium [13]. The value ωp,a =
√

4πn2
az

2
ae

2/ma is

the plasma frequency for the particles of species a.

As easy to see Eq. (1) contains also the Planck distribution, which corresponds to the

limit of negligible particle density. We have stress that the zero fluctuations in plasma may

in principle differ [14] from the vacuum zero fluctuations and the form of these fluctuations

strictly speaking, is not known. Both functions E(1)(ω) and E(2)(ω) are definitely positive

for arbitrary form of TDP and for arbitrary frequencies due to inclusion of zero fluctuations.

For the low-frequency region, considering in this paper, zero oscillations are negligible as we

show below.

In this work, using the results of analytical and numerical calculations [13] for TDP of

almost ideal plasma, we consider the influence of non-ideality on low frequency behavior of

the full SEDER (1) when the parameter, characterized the plasma non-ideality (or Coulomb

interaction parameter) Γ = e2n1/3/T increases. The concrete form of the TDP εtr(k, ω)

which we use for weakly non-ideal and non-relativistic electron gas is determined by the
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relations

Reεtr(X,W ) = 1− 2Γeη
2/3
e

W 2
− Γeη

2/3
e

W 2
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3
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,(4)

Imεtr(X,W ) =

√
π Γeη

2/3
e

W 2

{
1

X
+

X

2π

}{
exp

[
−
(
W

2X
− X

2

)2
]
− exp

[
−
(
W

2X
+

X

2

)2
]}

,(5)

where ηe = neΛ
3
e, W = h̄ω/T , X = kΛe/

√
4π, Λa = (2πh̄2/meT )

1/2 is the thermal de

Broglie wavelength for electrons and 1F1(α, β, z) is the degenerate hypergeometric function.

As is clear the description of electromagnetic fluctuations in presence of plasma medium

characterizes not only temperature, as in the case of SEDER for free photon gas, but also

the values of plasma density, electron mass and charge through the TDP. Equations (2) and

(3) describes TDP in thermodynamic limit when volume V and the full number of particles

Ne tends to infinity such a way that the ratio N/V → Const equals a homogeneous average

electron density ne = limN→∞,V→∞(N/V ). It is necessary to stress that non-relativistic

form for εtr(X,W ) can be used only if ω < ck. As known for non-collisional plasma system,

corresponding to generalized random phase approximation of relativistic plasma medium, for

the region of frequencies ω ≥ ck the condition Imεtr(X,W ) ≡ 0 is fulfil [15]. Therefore, for

ω ≥ ck photons are non-damping, since the phase velocity of wave exceeds the light velocity

c. This means integration on k in Eqs. (2), (3) should be splitted into two integrals: from

zero to ω/c with Imεtr(X,W ) ≡ 0 and from ω/c to ∞. As easy to see for asymptotically

small ω, considering in this paper only the integral from ω/c to ∞ is essential. Wherein, the

lower limit can be taken equal to zero and for non-relativistic electrons Eq. (5) is applicable.

II. ASYMPTOTICAL BEHAVIOR OF THE SEDER AND THE COULOMB

INTERACTION INFLUENCE

Let us introduce the dimensionless SEDER e(ω) determined by the equalities E(ω) =

(V T 3/π2c3h̄2)e(ω). As is known [10,11] the low-frequency asymptotic of the part e(1)(ω) of
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Figure 1: The different terms of the SEDER for η = 0.1 and Γ = 0.02. e(1)(W ) - the dashed line —

1; e(2)(W ) - the dotted line —2; the full SEDER in a plasma e(1)(W )+e(2)(W ) - the dashed-dotted

line —3. Calculations are valid for W ≪ 1, however formally are continued for the region W ≃ 0.5.

The Planck SEDER -solid line —4.

the SEDER for the dimensionless variable W ≪ 1 has the logarithmic singularity

e(1)(ω) |ω→0→
√
2 Γη2/3

3
√
πα

[
4 ln 4− 3γ +

6

π
− 2 ln(α

√
πΓη2/3W )

]
≃ 91, 1 η1/3Γ2[28− 2 ln(

η4/3W

Γ
)],(6)

where γ = 0, 577 is the Euler’s constant. The term W 3/2 in e(1)(ω) corresponding to zero

vacuum oscillations is omitted as negligible in e(1)(ω) in the low-frequency limit. The low-

frequency asymptotic W ≪ 1 of the part e(2)(ω) of the full SEDER [12] for electron gas can

be found analytically by the method similar to that proposed in [10] for the part e(1)(ω) and

reads

e(2)(ω) |ω→0→
4Γ2η4/3

√
2πα

3
√
3 (α

√
2πΓη2/3W )2/3

≃ 7.32
Γ5/3η7/9

W 2/3
, (7)

where α ≡ Ry η2/3/πmec
2Γ (Ry is the Rydberg constant equals mee

4/2h̄2).

As easy to see from Figures 1 and 2 the Coulomb interaction increase leads to the increase

of the SEDER for W < 0.5. This value of the SEDER is essentially higher than the Planck

for small W ≪ 0.5. In turn, the term of zero vacuum oscillations W 3/2 much smaller than
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Figure 2: The different terms of the SEDER for η = 0.1 and Γ = 0.03. Notations are the same as

in Figure 1.

the Planck low frequency representation eP = W 3/(expW − 1) ≃ W 2. The last one is small

in comparison with the calculated on the basis of Eqs. (6), (7) asymptotical curves of the

SEDER as it seen on Figures 1 and 2. In the region of frequencies W ≪ 0.1 the singular

behavior ∼ 1/W 2/3 obliged to the term e(2)(W ) is dominant. For larger W the crucial role

plays the logarithmic singularity of e(1)(W ). The Planck distribution is essential for the

frequencies of order W ≃ 0.3 ÷ 0.5 and even more, where the asymptotic relations (6) and

(7) are strictly speaking invalid.

III. CONCLUSIONS

In conclusion, we emphasize that the above results take place for homogeneous and

isotropic Coulomb system that is in thermodynamic equilibrium with a thermostat at a

given temperature T . This system consists charged particles and a quantized electromag-

netic field that interact with each other. Note, that the effective use of the QED approach

which we use is applied to many problems of statistical physics, including fluctuations in

[16]. However, calculation of quantum fluctuations of the electromagnetic field is not enough
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Figure 3: The different terms of the SEDER for η = 0.2 and Γ = 0.02. Notations are the same as

in Figure 1.

to find the SEDER in plasma medium. We consider the case of non-relativistic and non-

degenerate charges under conditions when the accounting of quantum effects in TDP are

fundamental for the convergence of the respective integrals at large values of wave vector.

In the above general expressions for the spectral energy density of the equilibrium radiation

these quantum effects are associated with the spatial and temporal dispersion of the trans-

verse TDP. The explicit analytical expressions for the low-frequency asymptotical regimes

for the SEDER are valid for plasma with a small interaction parameter Γ < 1. Since the

results depend on the interaction parameter Γ we can estimate the role of Coulomb inter-

action on the SEDER. It is shown that increase of the parameter Γ leads to increase of the

SEDER at low frequencies, where the role of plasma particles is dominant and the SEDER

crucially differs in comparison with the Planck distribution.

In application to cosmic microwave background radiation (CMBR), the considered effects

can be essential in observable region of radiation. This problem has been formulated in

the simplest approximation for the SEDER neglecting the spatial dispersion of the TDP

in [6], [17]. In this approximaion damping is absent, the photon spectrum is equal to
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Figure 4: The different terms of the SEDER for η = 0.1 and Γ = 0.02 for W < 5 · 10−4. e(1)(W ) -

the dashed line — 1; e(2)(W ) - the dotted line —2; the full SEDER in a plasma e(1)(W )+ e(2)(W )

- the dashed-dotted line —3. For the region of very small W < 10−4 the term e(2)(W ) exceeds

e(1)(W ). Planck’s curve for the SEDER is negligible for the considering ω and does not shown.

ω =
√

ω2
p + c2k2 and the SEDER turns to zero at ω < ωp [6, 17-19]. Considering the root of

equation ω2Reεtr(k, ω)− c2k2 or in the dimensionless form αW 2Reεtr(X,W )− 2X2 we can

formally determine the ”photon spectrum”. For small X the dependence of the root W (X)

is close to the case without spatial dispersion. At the same time the SEDER is crucially

different from the Planck one due to non-zero Imεtr(X,W ).

The conclusion about influence of plasma medium on the different frequency ranges of the

equilibrium radiation and opportunity to observe this influence needs to take into account

the spatial dispersion of the TDP and interaction between primordial plasma particles into

epoch before recombination. Note also, that the calculation of TDP in this work is based on

the traditional normalization of the photon distribution function on zero chemical potential.

The alternative variants (see, e.g., [19]) can be considered separately in the framework of the

developed approach, accounting the spatial dispersion of the TDP. The maximal value of

the dimensionless frequency W = h̄ω/T is, according to the Planck distribution at T ≃ 2, 72
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K, equals Wmax ≃ 2, 58 and lies outside the asymptotical region of frequencies. However, for

a fixed frequency, in the hot primordial plasma before the recombination epoch, the equilib-

rium radiation could be different from the Planck distribution since for any fixed frequency

ω the respective dimensionless frequency at the peak Wmax is shifted to the low-frequency

region. This difference can be essential for the description of the Universe evolution.
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