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First, | want to remember Vladimir Evgenievich Fortov and Gennady Isakovich Kanel.
Under the action of pulses in the microsecond range at the a-e transition, a
characteristic three-shock configuraton is observed.

In the picosecond range, such a three-wave configuration is not observed.

We have already encountered a similar situation in the study of elastic-plastic shock
waves, when the pressure in the wave can significantly exceed the classical elastic limit,
but it moves as elastic.




Experimental scheme. Ultrafast spectral interferometry
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The experimental samples were
Armco iron films 580, 740, 970, and
1160 nm thick, deposited by the
magnetron method on glass substrates
150 pm thick.
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L agrange inver se analysis of kinematic data

Stress and strain are directly
integrated from conservation laws
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John B. Aidun and Y. M. Gupta Analysis of Lagrangian gauge measurements of
simple and nonsimple plane waves Journal of Applied Physics 69, 6998 (1991)

Lagrange inverse analysis method was successfully used for inferring experimental
results.

The main idea is Lagrangian form of mass and momentum equations where right hand
side depend on u(t,h) and parameter of initial density. Therefore if our experimental
data could be approximated as a function of two variable h (Lagrange coordinate) and t
(time), we may directly integrate it for calculating stress and strain.

Though we have six films with a precise history of free surface velocity, which is
doubled mass velocity for each fixed Lagrangian coordinate h.

The function u(t,h) is approximated with linear piecewice interpolation using 10
reference points at each profile.




Stress-Strain diagram inferred from
kinematic data
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E\ll Romashevsky P.S., Shock-induced elastic, plastic and polymorphic transformations in iron films by picosecond laser
pulse.

Then stress and strain are integrated and state diagram could be obtained for all except
the largest width 1160 nm, because we use only interpolated data.

There are three shock Hugoniots are shown for elastic, alpha and epsilon-phase iron.
And five paths for different films width. It was surprisingly observed, that transition to
epsilon phase appeared in the unloading part of profiles. That is peculiarity of ultra-
short impulse response we suppose.




Numerical simulations.
Two-temperature hydrodynamics
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In metal for the electronic component, we use analytical approximations based on DFT-
calculations.

For the ionic component, a tabular wide range equation of state is used, which takes
into account the gas, liquid and solid alpha phases, calculated by K. Khishchenko

In glass, which is always assumed to be solid, it.s own analytic equation of state of the
Mie-Grineisen type is used, own initial density.

There is no electronic component in the glass.




MD simulation of SW in polycrystallineiron
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Left piston moves with the velocity of Lagrangian particle taken from 2T-HD modeling.
Sample dimensions 590x60x10 nm. Grain boundaries are perpendicular to xy-plane.

There is piston on the left, that moves in according with results of hydrodynamic
calculations (Lagrange node x*0 = -150 nm)




Py and equivalent stress T (GPa)

P, and equivalent stress T (GPa)
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Ha aTom cnalife oTaenbHble KapTUHKMN.

Pasmep ncxoaHoro obpasua 590x60x10 Hm. Obpasel, cocTtout n3 ~30 MUIIMOHOB

aTOMOB.

Bpems B neBOM yrny yKasaHo € Hayana UCTOPUM NarpaHXKeBol YactTuupl (T.e. c t=0 8 2T

Koae).

OpueHTaLmMA KPUCT.PELLETKN B 3epHaXx C/yyaliHas.

lPaHKU BCEX 3EPEH CTPOro NepneHANKYNAPHbI SKPaHy (MNA0CKOCTM Xy).
3T0 NO3BONAET CTPOUTbL KapTbl BENNYUH YCPEAHEHHbIX Ha BCHO rybuHy Z (=10 Hm)
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Validation of Lagrange inverse analysis
by M D simulation of polycrystallineiron: 2

Lagrange particles historiesform MD
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= MD simulation provides full information about seted Lagrange particles.

= 11 particles with h=150, 200, ...600 and 160 nm aezlu

= Solid P-V lines from the inverse analysis, Dashéd lihes from MD.
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Ana Banngaumm metoga UCNONb3yeTcA 3anncb UCTOPUN COCTOAHUA NTarPaHKeBblX

4acTUL, U3 MOJIEKYNAPHO-ANHAMMYECKOro moaenmpoBaHua. Habop npodunei yactmy, c
kKoopanHaton h ot 150 ao 600 HM NoKa3aH Ha pUCYyHKe cneBa. B pesynbraTe
BOCCTAHOB/IEHA AMArpaMmma nyTer CoCTOSAHUA NPOAO0/IbHOIo HanpsaxKeHua-gebopmaunm
M NoKasaHa gna vactuy ¢ h=200 1 500 Hm. Ha npaBom rpaduKe nokasaHbl CHOBaA
aanabaTbl *Kenesa gna ynpyroi u anbda-ancunoH ¢as, npuyem ancuaoH dasa xenesa,

Habnogaeman 8 Ml mogennpoBaHUmM NoKasaHa NyHKTMpoM. Habnoaaetca xopoluee
cornacue guarpammbl 3 Ml moaennpoBaHMa U paccynTaHHOW NPU BOCCTAHOBAEHUN.

For validation of the inverse analysis technique the molecular dynamics histories of

Lagrange particles are recorded. A series of these recorded free surface velocity profiles

with particles initial positions from 150 to 600 nm are shown on the left figure. The
stress-strain diagram is inferred and shown for Lagrange particles h=200 and 500 nm.
On the right, shock Hugoniots of iron in elastic, alpha and epsilon phases are shown.

Epsilon phase Hugoniot for iron from MD simulation is shown with dashed line. A good
agreement of the inverse analysis and the molecular dynamics is observed.




Conclusions

This paper presents the results of experimentslagér shock waves in iron films. It is known tirah has an
alpha-epsilon phase transition. Upon transitioa,dtystal rearranges its lattice from body-centexdaic (bcc) to hexagonal
close-packed (hcp). The transition occurs underasiggtationary load with an increase in pressuovy@li3 GPa. The
transition is observed both under stationary caomit (for example, diamond anvils) and under gstationary conditions.
Such quasi-stationary conditions include loadshimck waves propagating in the order of millimeteck targets.

The analysis of the experimental data (these @rédépendences of the speed of the free rear swifatime) was carried
out by two methods. This analysis makes it possibketermine the profiles of density and longitadisiress from the
experimental data. Further, these profiles areggptefl onto the phase plane: inverse compressior-+ngitudinal stress.
The first method allows you to reach only the stathind the front of the 2nd jump. Whereas the sécnethod describes
both jumps and the unloading wave behind them.riiéthods are in good agreement in the section ditftgelastic) and
second (plastic) shock waves

We note that in experiments in the submicrosecoadit@ range, a three-wave configuration of elagiEstic waves
and a jump of the — ¢ transition is observed. In our experiments witmai#ist loading, we do not see the third jump. It is
striking that the approach to the epsilon phasermsceot in the jump, but in the unloading wave.




&S
N N
\- \\\}‘0“\ §/

£\

Thank you for your attention







Experimental scheme

6—optical delay line
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The source of heating and diagnostic pulses was a 5! & 0 3 Ressssuchocecnud i :

titanium—sapphire laser system, bengaid
the duration of the heating pulse was 1.2 ps.

The laser pulse energy was E = 100 + 5 mJ, which
corresponds to the incident energy density F et th
center of the focal spot about 3.4 Jem .
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Spatio-temporal distribution of the phase of thegdiostic pulse when the shock wave reaches thetirésce.
Time scan is vertical scale in microns. The cressisn along the short axis of the ellipse is thezon scale in ps.




Experimental results

150

]
g
y/
100 / 100
= 7 =
g 4 5
£ g
50 50
0 “—*‘*"—'-‘*/ ....... 1 o
0 50 100 150 200 W6 T % i
1(ps) t(ps)
(a) ()
130 1 80
“"
/] e 4
100 /”(
] Es0
50
20
0 0
100 150 200 250 100 150 200 250
@9 1(ps)
(©) (d)

Displacement histories of the free surface of samples with thickness:
(8)—580 nm, (b)—740 nm, (c)—970 nm, (d)—1160 nm




Experimental results.
The evolution of the shock wave
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Attenuation of elastic (squares) and plastic (gles)
waves at a propagation length from 580 nm to 1160
nm in iron.




Experimental results.
The evolution of the shock wave

U =597+15u,
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1160 | 184.5 0.61 0.305 | 0.953 15.4
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Comparison of the results of measurements of theksivave
velocity Usand the mass velocity behind its frap{markers)
with elastic (red line) and plastic (blue line)rirshock adiabates




Experimental resultsnd
Inverse analysis of kinematic data
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Wave profiles of displacement (black lines) and
velocity (blue lines) of the free surface of irmf
samples with thickness:
1—580 nm, 2—740 nm, 3—970 nm, 4—1160 nm
Points 1—10 are the nodes of the polyline that
approximates the velocity dependence.

Calculation of normal stress
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Calculations in the piecewise quasi-stationary exipration (PQsA)

12

0.8

0.4

half of free surface velocity (km/s)

100 150 200 250
time (ps)

Free surface velocity profiles for thick films from

left to right: 160, 480, 580, 740, 970 and 1160

nm. Pointsl-2and3-4indicate elastic and

plastic waves, respectively.

Using the law of conservation of mass on the elastctionl—2,
= plle/(Usle — u) Usle is the elastic jump velocity

The longitudinal component of the stress increastésthe velocityu

according to the law

a =0+ po(Ude)? — p(Use — ).

o= IJU(I-",JDJ“-

The stress in the film before the arrival of theveya oy = ()

On a homogeneous ar2a3 the density and stress are

p23 = polUsle/(Us|e — uz),
a3 = polUs|e)ua.

. Uglp —u2
In the same way, on plastic secti®dd p = m;:"ji

) . Uslp—u
o+ p(Uslp — u)® = 023 + paa(Us|p — uz)™.

o = o3+ paa(Us|p — uz)(u — uz).




Calculations in the piecewise quasi-stationary axipration (PQsA)
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Iron phase plane. The adiabats are shown: elastip@ssion in the
approximation of an isotropic elastic body (bluevay elast), the
adiabats of the ande phases—green and red curves, respectively.
Along with the adiabats, the profiles for the 160 film are presented.
The blue and brown profiles are obtained at waepg@gation speeds
of 8 and 7.1 km/s. The velocity 7.1 correspondhéoaverage wave
velocity over the 480—160 nm range of propagatistadces.
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Plastic wave trajectory plotted together with
elastic wave trajectory. The pair of markers
and curves of blue and green shades refer to
wave
1-2. The pair of red shade markers and the red
curve represent plastic wave 3—4 data.
The approximations of experimental data
(markers) are given by solid curves.




Calculations in the piecewise quasi-stationary axipration (PQsA)
480 and 740 nm thick films
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Three adiabats and profiles for plastic wave velesit
Us|p = 6 and 6.7 km/s are presented. The bold orange
segment outlines the geometric position of the tgoin
4 (the end point of the plastic wave) on the given
phase plane at a speed variatiotdsfp in the range
from 6 to 6.7 km/s.
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Three adiabats and profiles for the velocities abgt and
plastic waves at the exit from a 740 nm film aresented.
The bold orange segment is the position of poiritsfigure
11 for a given film on the phase plane. The segrisefiited
with velocity variation Us|p in the range from 5d4.6 km/s




Calculations in the piecewise quasi-stationary axipration (PQsA)
970 and 1160 nm thick films
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Repetition of adiabats and profiles for 970 and 14@0films. The numbers 970 and 1160 in the
picture field indicate the thickness of the filniie rest of the numbers give the speed in km/s.




Calculations in the piecewise quasi-stationary exipnation (PQsA)
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A generalization of calculations by the piecewisagj-stationary approximation method for all sl is shown.

The six orange areas show the states behind thesda2 and3—4on the phase plane. From top to bottom, there are
thicknesses from 160 nm to 1160 nm: 160, 480, 380, 970 and 1160 nm. According to the PQsA, thetion of
thee-phase is small in the mixture @fandes-phases. The only exception is the lowest regidrichvbelongs to the
1160 nm film. In it, according to the PQsA, a coeatpltransition to the-phase occurs.




