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NUMERICAL METHOD FOR SIMULATING
REACTING MEDIA FLOWS

P. E. Belyaev, I. R. Makeyeva, E. E. Pigasov, D. A. Mastyuk

Introduction

Selecting the Kinetic Mechanism
Results

• Feasible numerical simulation of ignition and detonation of combustible 
compounds becomes especially important due to the growth of interest in 
hydrogen energetics.

• The main objective of this work is to enable simulation of reacting media flows in 
geometrically complex computational domains using the numerical method which 
previously exhibited high accuracy while simulating shock processes [1] using the 
modified Kuropatenko method [2]. 

• The approach used to simulate chemical transformations [3] and supplemented 
by the solver for rigid ODEs (ordinary differential equations) [4] exhibits high 
accuracy when describing hydrogen oxidation reactions. 

• The work compares the experimental results [5] and the results of simulating 
deflagration-to-detonation transition of hydrogen-air mixture in a shock tube with 
barriers obtained with the developed modified method.
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Methods
• The system of equations describing the model of multicomponent one-velocity 

continuous medium was solved using the finite-volume method:
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• The system of equations is closed by the ideal gas law.
• The reaction rate is derived from the Arrhenius equation and the law of mass 

action:
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• The changes in reagent concentrations and temperatures are described as:
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• The rate of mass change and energetic reaction effect computed in the following 
way contribute into the appropriate source terms 𝑆𝑆𝑀𝑀 and 𝑆𝑆𝜀𝜀:
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Deviation of adiabatic induction times computed using the kinetic mechanisms 
[6] and [7] from the experimental values [8].

• Next to the names of the given mechanisms [6] and [7] in square brackets 
there is a value calculated for the mechanism using the formula:
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• The calculation sets and computational domain geometry correspond to the experimental sets described in
[5]. The tube has a square section with the side 𝐷𝐷 = 0.112 𝑚𝑚, is 6 m long and comprises barriers spaced at
a distance 𝑆𝑆. Each barrier has a round orifice whose area correlates to the tube cross-sectional area at a
ratio of 0.6:1.

Comparison of detonation velocities between 
calculations and experiments [5].

• The work shows the feasibility and good accuracy of simulating detonation flows 
of reacting media in complex-geometry computational domain using the 
developed modified method.

• The absence of the models describing turbulence and radiant heat exchange 
results in underestimating detonation velocity in less obstructed areas and 
prevents deflagration-to-detonation transition in compounds which are not quite 
stoichiometric.

• Despite the good accuracy in determining detonation flow parameters, in further 
works it is intended to introduce models of turbulence and radiant heat exchange 
in the numerical algorithm since some applied tasks require a more detailed 
elaboration, and the phenomena of turbulence and radiant heat exchange are of 
key importance in burning and detonation processes. 

Simulation of Detonation 
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