

### АВТОМОДЕЛЬНОСТЬ НЕЛИНЕЙНОГО ЭКРАНИРОВАНИЯ В ВЫСОКО-АСИММЕТРИЧНОЙ КОМПЛЕКСНОЙ ПЛАЗМЕ

Мартынова Инна Александровна\*, Иосилевский Игорь Львович

\*martina1204@yandex.ru

Объединенный институт высоких температур РАН Московский физико-технический институт (национальный исследовательский университет)

Эльбрус, 2021





- Предпосылки работы
- Эффективный заряд макроиона Z\* и деление всех микроионов на свободные и связанные
- Автомодельные кривые зависимости эффективного заряда Z\*(Z,kT,nz,Rz)
  - от исходного заряда макроиона Z,
  - от температуры системы kT,
  - от концентрации макроионов n<sub>z</sub>,
  - от радиуса макроиона R<sub>z</sub>

**Модель:** двухкомпонентная (+*Z*,-1) и (-*Z*,+1) электронейтральная равновесная система классических макроионов конечных размеров и точечных микроионов, *Z* >> 1

## Ограниченность области применимости линеаризованного (дебаевского) потенциала



### Ограниченность области применимости линеаризованного (дебаевского) потенциала



Жуховицкий Д.И., Петров О.Ф. и др. New J. Phys. 2015

### Приближение Пуассона-Больцмана в средней сферической электронейтральной ячейке Вигнера-Зейтца





Z = 1000 = 3аряд макроиона $kT_i = 0.03 \text{ eV} - температура микроионов$  $n_Z = 10^8 \text{ cm}^{-3} - плотность макроионов$  $R = 13.4 \ \mu\text{m} -$ радиус ячейки  $R_Z = 0.1R -$ радиус макроиона

### Сравнение результатов



# Определение эффективного заряда Z\* и деление микроионов на свободные и связанные

1) Деление микроионов на свободные и связанные по знаку полной энергии [Szichman H. et al., 1997, J. Quant. Spectrosc. Radiat. Transfer]) 2) Свободные микроионы (n штук) в зоне, где выполняется условие линеаризации =>  $Z^* = Z - n$  [Diehl, Barbosa, Levin, 2001, EPL] 3) Свободные микроионы с концентрацией, равной концентрации 3) Своюдные микроионе, с микроионе, с микроионов на границе ячейки,  $Z^* = Z - n \Longrightarrow Z^* = \frac{4\pi}{3} n_{i0} \left( R^3 - R_Z^3 \right)$ распределение микроионов концентрация микрфионов на границе ячеек макроион

две соседние электронейтральные ячейки Вигнера-Зейтца

## Сравнение зависимостей эффективного заряда макроиона Z\* от исходного Z при различных определениях Z\*

2 ветви изменения зависимости  $Z^*(Z)$  – линейное экранирование и насыщение



## Зависимость эффективного заряда макроиона Z\* от исходного Z для различных температур с учетом нелинейного экранирования



Ζ

#### Единая автомодельная зависимость эффективного заряда Z\* от исходного Z для различных температур kT при фиксированной концентрации макроионов n<sub>7</sub>



#### Автомодельные зависимости эффективного заряда Z\* от исходного Z для различных температур *kT* при фиксированных концентрациях макроионов n<sub>z</sub>



## Автомодельные зависимости эффективного заряда макроиона Z\* от исходного заряда Z для различных параметров упаковки ф



 $Ze^2/(\varepsilon kTR_Z)$ 

# Автомодельная зависимость эффективного заряда макроиона Z\* от исходного заряда Z, температуры kT, радиуса макроиона R<sub>z</sub> и концентрации макроионов n<sub>z</sub>



# Уменьшение области достижимых значений в двухкомпонентной комплексной плазме

Фазовое состояние зависит от межчатичного взаимодействия макроионов на средних расстояниях, т.е. определяется эффективным зарядом макроиона и свободными микроионами



# Уменьшение области достижимых значений в двухкомпонентной комплексной плазме

Фазовое состояние зависит от межчатичного взаимодействия макроионов на средних расстояниях, т.е. определяется эффективным зарядом макроиона и свободными микроионами



### Выводы

С учетом нелинейного экранирования:

- 1) Продемонстрировано два режима изменения эффективного заряда макроиона *Z*\* в зависимости от исходного заряда *Z*
- режима слабого экранирования, когда Z\* ≈ Z,
- и режима сильного экранирования («насыщения»), когда Z\* ≈ const, с плавным, но отчетливым переходом между двумя режимами.
- Обнаружена единая автомодельная зависимость эффективного заряда Z\* от исходного Z для различных температур системы и радиусов макроиона при фиксированных концентрациях макроионов
- Выявлена автомодельность зависимости эффективного заряда Z\* от Z для различных температур системы, радиусов и концентрациях макроионов.

Martynova I., Iosilevskiy I. Macroion effective charge in complex plasmas with regard to microions correlations **2021** *Contrib. Plasma Phys.* V.61, e202000142.