

Volatile nature of liquid–liquid phase transition in dense hydrogen

Pavel Levashov, Dmitry Minakov Joint Institute for High Temperatures RAS, Moscow, Russia

XXXVI International Conference on Equations of State for Matter March 1-6, 2021, Elbrus, Kabardino-Balkaria, Russia

Motivation

- Plasma phase transition was predicted by G. Norman and A.
 Starostin in late 60th of the 20th century; still undiscovered experimentally
- Well-known experiments in Sarov (Mochalov M.A.) are debatable even in VNIIEF; our QMD calculations show that temperature in this experiment is much higher than required for liquid-liquid phase transition
- Liquid-liquid phase transitions are known for many years
- Liquid-liquid phase transition in hydrogen is still not confirmed experimentally
- Current experiments are contradictory and can not confirm the 1st-order character of phase transition

Phase Diagram of Tin

Brazhkin V.V. et al. High Pressure Research 15, 267 (1997)

Phase Diagram of Selenium

Brazhkin V.V. *et al.* High Pressure Research **15**, 267 (1997) Norman G.E. *et al.* J. Phys.: Conf. Ser. **946**, 012101 (2018)

Phase Diagram of Tellurium

Negative slope of L'-L'' line

Decrease of volume and electrical conductivity along L'-L'' line

Brazhkin V.V. et al. High Pressure Research 15, 267 (1997)

Liquid-Liquid Phase Transition in P

Katayama Y. et al. Nature 403, 170 (2000)

Liquid-Liquid transitions in AsS

Brazhkin V.V. et al. PRL 100, 145701 (2008)

Liquid-liquid transition in Ce

Cadien A. et al. PRL 110, 125503 (2013)

Liquid-Liquid Phase Transition in N

Boates B. and Bonev S. PRL 102, 015701 (2009)

Simulations of Liquid-Liquid transition

- Supercooled liquid silicon
 - Sastry S., Angell C.A. Nature Materials **2**, 739 (2003) (MD, Stillinger-Weber) Vasisht V.V. *et al.* Nature Physics **7**, 549 (2011) (MD, Stillinger-Weber) Ganesh P. and Widom M. PRL **102**, 075701 (2009) (QMD, 300 particles)
- Supercooled liquid water
 Poole P.H. et al. Nature 360, 324 (1992)
 Xu L. et al. PNAS 102, 16558 (2005)
- Supercooled liquid silica (quartz)
 Saika-Voivod I. et al. PRE 63, 011202 (2000)
- Hydrogen (deuterium)
 Lorenzen W. et al. PRB 82, 195107 (2010)
 Morales M.A. et al. PNAS 107, 12799 (2010)

Hydrogen (deuterium), mixing H & H₂

P = 125 GPa, T = 1500 K, QMD simulation, PBE

- Phase boundary is volatile if subjected to thermal perturbation
- No phase separation due to the negative slope of phase boundary on the P-T space
- The interfacial H₂/H free energy is negative
- Critical nucleus of the new phase is infinitely small, volumetric spontaneous dissociation

Geng H.Y et al. PRB 100, 134109 (2019)

Phase diagram of hydrogen (QMD)

Geng H.Y et al. PRB **100**, 134109 (2019)

Machine-learning MD Potential: smooth transition in hydrogen

Neural network as an MD potential (learning using QMD configurations)

1728 atoms

All crystal phases of hydrogen are reproduced

Order parameter is smooth, other parameters (density, *C*_p, RDF, DOS show no discontinuities

Sharp maxima of density and C_p are observed below the melting curve

Cheng B. et al. Nature (2020)

Conclusions

- Liquid-liquid phase transition in hydrogen (deuterium) has nothing to do with plasma phase transition
- Phase separation between molecular and atomic phases of hydrogen is impossible because the interfacial H₂/H free energy is negative
- All experimentally confirmed liquid-liquid phase transitions deal with either amorphous or polymeric phase
- Numerical predictions of liquid-liquid phase transition in hydrogen are strongly dependent on the number of particles and calculation parameters
- Liquid-liquid phase transition in hydrogen, if exists, may be found in supercooled liquid (below the melting line)