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Abstract The thermodynamic stability of a multicomponent nonideal plasma is studied. To find pair correlation functions and partial static structure factors, the OZ integral equations
for a multicomponent fluid were used, which were closed using the HNC approximation. A procedure has been developed for the transition to the one-component approxima-

tion for the most nonideal plasma subsystem for the case of any number of plasma components. The thermodynamic potentials of a multicomponent plasma were determined: internal energy,
pressure, free energy, chemical potentials and their derivatives. The data obtained in numerical calculations were used to determine the region of thermodynamic stability of a three-component
nonideal dusty plasma.

1. Introduction

Plasmas which contain the so called condensed disperse phase or
dusty plasmas are widely spread in nature and used in technology,
therefore research of such complex systems is of considerable interest
for both fundamental physics [1–5], and for a number of applications,
for example, for the nanoparticle industry [6].
The present work, unlike the above papers, is dedicated to the descrip-
tion of electrostatic properties of dusty plasmas with the Coulomb pair
interaction potential between charged plasma particles based on the
multicomponent Ornstein-Zernike equation [7,8].

2. OZ equations for a multicomponent plasma

We consider a three-component plasma with the interaction between
charged particles described by the Coulomb potential:

Vνµ (|rν − rµ|) =
e2zνzµ
|rν − rµ|

. (1)

The Ornstein-Zernike equation for a homogeneous multicomponent
fluid has the form [7]:

hνµ (r) = Cνµ (r) +
∑
λ

nλ

∫
Cνλ (|r− r′|)hλµ (r′) dr′,

ν = 0, 1, 2, µ = 0, 1, 2, (2)

where hνµ = gνµ − 1 and Cνµ are the partial and the direct pair corre-
lation functions, respectively; nλ is the averaged number density of the
λ-species particles, nλ = Nλ/V, Nλ is their total number in the system
of the volume V . Therefore, the total quasineutrality condition takes the
following form:

2∑
ν=0

zνnν = 0. (3)

The three-dimensional Fourier transformation converts this system of
integral equations into the system of algebraic equations:

h̃νµ (k) = C̃νµ (k) +
∑
λ

nλC̃νλ (k) h̃λµ (k). (4)

From (4) one gets

h̃00 (k) = C̃eff (k) + n0C̃eff (k) h̃00 (k) , (5)

which involves the effective direct correlation function

C̃eff (k) = C̃00 +
1

D(k)

[
n1C̃

2
01

(
1− n2C̃22

)
+ n2C̃

2
02

(
1− n1C̃11

)
+ 2n1n2C̃01C̃02C̃12

]
, (6)

where
D(k) =

(
1− n1C̃11

)(
1− n2C̃22

)
− n1n2C̃2

12.

One can see that Eq. (5) has the form of the OZ equation for a one-
component liquid.
In the case coupling parameters is small for all subsystems besides the
dusty subsystem

C̃νµ (k) = −4πe2zνzµβ

k2
, ν = 0, 1, 2; µ = 1, 2. (7)

Here β is the inverse temperature: β = 1/T . From Eq. (6),

C̃eff (k) = C̃00 (k) +
4πe2z20βk

2
ei

k2 (k2 + k2ei)
, (8)

where k2ei = k21 + k22, with the electron, k1, and ion, k2, screening con-
stants defined by relations

k21 = 4πe2n1β, k22 = 4πe2z22n2β. (9)

The solution for h00 will not change if the effective Debye potential

Veff (r) =
e2z20
r
e−keir (10)

is introduced. It is important that the screening constant in this case
is determined only by electrons and ions whose number densities are
related to that of the dust particles by the total quasineutrality condition
(3). Therefore, when the charge or number density of dust particles
varies, the screening constant kei also changes.
In the HNC approximation, the bridge functional is assumed to be zero:
Bνµ(r) = 0 and for the closure of the OZ equation (5) the equation

h00(r) = e−βVeff (r)+h00(r)−Ceff (r) − 1 (11)

can be employed.
The pair interaction potential of charged particles in the plasma remains
the Coulomb one. In general, Veff is defined by the expression

Veff (r) = V00 −
1

2π2βr

∞∫
0

1

D(k)

[
n1C̃

2
01

(
1− n2C̃22

)
+ n2C̃

2
02

(
1− n1C̃11

)
+ 2n1n2C̃01C̃02C̃12

]
k sin (kr) dk. (12)

3. Pressure and internal energy

The interaction-associated part of the internal energy in a homoge-
neous plasma is defined as [7]

∆U = 1
2

∑
ν

∑
µ

nνnµ

∫
Vνµ (r) gνµ (r) dr, (13)

and the pressure as [7]

P =
n

β
− 1

6

∑
ν

∑
µ

nνnµ

∫
r
∂Vνµ (r)

∂r
gνµ (r) dr. (14)

Hence, for the Coulomb interaction potential (1), taking into account the
condition of total quasineutrality (3) one finds:

∆U = 2πe2
∑
ν

∑
µ

nνnµzνzµ

∞∫
0

hνµ (r) rdr, (15)

P =
n

β
+

2πe2

3

∑
ν

∑
µ

nνnµzνzµ

∞∫
0

hνµ (r) rdr =
n

β
+

1

3
∆U. (16)

4. Numerical simulations and discussion of results

Figure 1: The structure factor of the dust component found from the
OZ equation in the HNC approximation for different coupling parameter
values: curve 1 corresponds to Γ = 0.1 and curves 2, 3, 4, 5, 6, 7, and
8 correspond, respectively, to Γ = 1, 2, 4, 10, 30, 100, and 155.

Figure 2: Pressure corrections due to the Coulomb interaction in a mul-
ticomponent dusty plasma vs the coupling parameter. The curves 1 and
2 are for n0 = 105 cm−3, n2 = 108 cm−3, T = 300 K, and z0 < 0; 3 and 4
are for n0 = 107 cm−3, n2 = 1010 cm−3, T = 2000 K, and z0 > 0. Curves 1
and 3 are the pressure corrections (16) obtained by the numerical solu-
tion of the OZ equation in the HNC approximation, 2,4 are the pressure
corrections within the Debye approximation.

Figure 3: Partial corrections to the pressure due to the Coulomb inter-
action in a multicomponent dusty plasma vs the coupling parameter for
n0 = 105 cm−3, n2 = 108 cm−3, T = 300 K, and z0 < 0, found on the basis
of the solution of the OZ equation in the HNC approximation. Curves 1,
2, 3, 4, 5 and 6 display, respectively, P00, 2P01, 2P02, P11, 2P12, and P22.

Figure 4: The partial (curves 1-6, reduced to the partial Debye pres-
sure correction, see Fig. 3) and the full pressure correction (curve 7) vs
the coupling parameter for n0 = 105 cm−3, n2 = 108 cm−3, T = 300 K,
and z0 < 0.

5. Thermodynamic stability of dusty plasmas

Consider the system as a solution: dust particles are particles of a sub-
stance dissolved in an electron-ion plasma, while electrons and ions
are particles of a solvent. In this case, the following conditions must be
satisfied for the TDS of a dusty plasma [9,10]:

CV =

(
∂U

∂T

)
V,N0,N1,N2

> 0, KT = − 1

V

[(
dP

dV

)
T,N0,N1,N2

]−1
> 0, (17)

µ00 > 0, µ11 > 0, µ00µ11 − µ01µ10 > 0. (18)

Figure 5: The interaction correction to the ideal isochoric heat ca-
pacity reduced to the Debye one for a multicomponent dusty plasma
vs the coupling parameter. Curve 1 corresponds to n0 = 105 cm−3,
n2 = 108 cm−3, T = 300 K, and z0 < 0; 2 is for n0 = 107 cm−3,
n2 = 1010 cm−3, T = 2000 K, and z0 > 0.

Figure 6: Isothermal compressibility of a multicomponent dusty plasma
as a function of coupling parameter. Curves 1 and 2 are for n0 =
105 cm−3, n2 = 108 cm−3, T = 300 K, and z0 < 0; 3 and 4 are for
n0 = 107 cm−3, n2 = 1010 cm−3, T = 2000 K, and z0 > 0. Curves 1,3
were calculated from the solution of the OZ equation in the HNC ap-
proximation, 2, 4 were calculated in the Debye approximation.

Figure 5 shows the values of the isothermal compressibility of a dusty
plasma: The thermodynamic stability of the dusty plasma is determined
by the sign of the dimensionless parameters ζν, ν = 0, 1, defined as

ζν =
Nν

T
µνν =

(
1− βe2z2νk

2
ν

4kD

)
− nν

8n

(
4− βz2νkDe2

)2
(3Pβ/n− 1)

, (19)

and by the sign of the dimensionless parameter ζ01 defined as

ζ01 =
2N0N1

T 2
(µ00µ11 − µ01µ10)

=
2n2
n

(
1− k3D

16πn

)−11− e2kD
4T

∑
ν
nνz

4
ν∑

ν
nνz2ν

 . (20)

Norman and Starostin observed in [11] that the third condition (18) can
be reduced to the requirement of stability of a non-ideal subsystem with-
out taking into account the ideal subsystems, for which the isothermal
compressibility must be positive:

KT,00 = − 1

V

[(
∂P00

∂V

)
T

]−1
. (21)

It is the positivity condition of KT,00 that is employed to determine the
thermodynamic stability in the one-component approximation.

Figure 7: Inverse isothermal compressibility χD00 =
(
KD
T,00n0T

)−1, the
derivatives of the chemical potential ζν (19) and ζ01 (20) in the Debye ap-
proximation vs the coupling parameter for n0 = 105 cm−3, n2 = 108 cm−3,
T = 300 K, and z0 < 0 with the curves 1, 2, 3 ,4, 5 and 6 standing for
η = KT,00n0T , η = KT,0n0T , ζ0, ζ1, ζ2, and ζ01, respectively.

Figure 8: Inverse isothermal compressibility of the plasma dust com-
ponent χ00 = (KT,00n0T )−1 as a function of the coupling parameter: 1
and 2 are for n0 = 105 cm−3, n2 = 108 cm−3, T = 300 K, and z0 < 0;
3 and 4 are for n0 = 107 cm−3, n2 = 1010 cm−3, T = 2000 K, and
z0 > 0; 1 and 3 are from the solution of the OZ equation in the HNC
approximation, 2,4 are in the Debye approximation, 5 is calculated from
χ00 = 1 + 4

9aΓ + 13
36bΓ

1/4 + 1
3c valid at Γ ≥ 1 with a = −0.89643, b = 0.86185,

c = −0.5551 obtained by a least square fit to the MD data over the entire
fluid range 1 ≤ Γ ≤ 160 in [12], 6 are calculated using the OCP equa-
tion of state obtained by numerical simulation of the OZ equation in the
HNC approximation in [13].

6. Conclusions

In the present work, on the basis of the OZ equation for a multicompo-
nent plasma, a transition is described to the OCP approximation with
an effective pseudopotential and in order to calculate the dust-dust pair
correlation function. It was established that in the case when all sub-
systems except the dust one are ideal the effective pseudopotential
becomes the Debye potential with the screening constant which should
be determined without the contribution of the dust subsystem but tak-
ing into account the condition of the total plasma quasineutrality. If the
non-dust components are not ideal the above effective potential might
deviate from the Debye form. In other words, we do not initially model
the dusty plasma as a Yukawa one-component system applicable only
when all components are weakly coupled.
It has been shown also that the isothermal compressibility of dusty non-
ideal subsystem becomes negative at Γ ≈ 2 both in dusty plasmas (in
thermal equilibrium) with negative and positive charges.
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