Some thermodynamic properties at the saturation line of SF_6 : Experimental and new modeling of data

Ustyuzhanin E $E^{1,@}$, Ockov V F^1 , Rykov V A^2 , Rykov S V^2 and Popov P V^3

¹ National Research University Moscow Power Engineering Institute, Krasnokazarmennaya 14, Moscow 111250, Russia

² ITMO University, Kronvergskiy 49, Saint-Petersburg 197101, Russia

³ All-Russian Research Institute of Metrological Service, Ozernaya Street 46, Moscow 119361, Russia

[@] evgust@gmail.com

In the present work, we have set a number of tasks including, firstly, an analyses of experimental (ρ_l, ρ_q, T) data for SF₆ in a temperature interval $2 \times 10^{-6} < \tau < 0.3$, here $\tau = (T - T_c)/T_c$. The second task is related to a search for scaling models, which describe a number of thermodynamic properties of matter, including the order parameter, f_s , and the mean diameter, f_d , of the coexistence line. Within frameworks of the third task, some criteria are considered with a goal to choose the structure and some parameters of these models. In accordance with this task, a number of combined models $[f_s(\tau)]$, $f_d(\tau), \rho_l(\tau), \rho_q(\tau)$ are proposed. These equations follow to the scale theory for critical phenomena. Parameters of these models have been calculated on the basis of input (ρ_l, ρ_g, T) data of SF₆ and of a nonlinear least squares method [1]. Our analysis has shown that new models $[\rho_l(\tau), \rho_q(\tau)]$ represent experimental results of Garrabos et al (2018) and Funke et al (2001) with an acceptable accuracy in the interval $(2 \times 10^{-6} < \tau < 0.3)$.

 Vorob'ev V S, Ustyuzhanin E E, Ochkov V F, Shishakov V V, Tun A T R, Rykov V A and Rykov S V 2020 High Temp. 58 333–41