Optimization of laser-plasma γ -rays source based on 100 TW femtosecond laser for radiography applications

Flegentov V A[@], Safronov K V, Gorokhov S A, Shamaeva N N, Tischenko A S, Fedorov N A, Kovaleva S F, Zamuraev D O, Shamraev A L and Potapov A V

Federal State Unitary Enterprise "Russian Federal Nuclear Center—Academician Zababakhin All-Russian Research Institute of Technical Physics", Vasilieva 13, Snezhinsk, Chelyabinsk Region 456770, Russia

[@] vflegentov@gmail.com

Laser-plasma electron accelerators are attractive sources of bremsstrahlung radiation (BR) for future radiography applications because of unique set of their intrinsic characteristics: high energy of emitting photons (tens of MeV), short pulse duration (~ps), small radiation emitting area (hundreds of μ m). Femtosecond lasers have prospects for applications in pulse radiography of moderate size objects (tens of mm), as for imaging of stationary objects by use of pulse-periodic radiation regime (~10 Hz).

100 TW femtosecond laser based γ -rays source parameters measurement and optimization experiments has implemented for pulsed radiography purposes. BR bursts were generated by interaction of high intensity (up to $5 \cdot 10^{19}$ W/cm²) laser pulses with planar 500 μ m thickness W target. The spectrum of generated BR ($E_{\rm ph} > 0.5$ MeV) was measured. The measured size of radiation emitting area \sim 300 μ m. BR yield was optimized by varying ASE (amplified spontaneous emission) prepulse contrast, and by altering laser focusing conditions on target.