Phase transitions and volumetric properties of an n-hexane–water system

Osmanova B K[®], Bazaev E A and Bazaev A R

Institute for Geothermal Research and Renewable Energy—Branch of the Joint Institute for High Temperatures of the Russian Academy of Sciences, Shamilya 39a, Makhachkala, Dagestan 367030, Russia

[@] badji@mail.ru

Using a constant-volume piezometer and the compression technique by reference to the isochors, authors got the p-T-dependence values for a splitting equimolar n-hexane-water system being in the binaryphase and the triple-phase areas of the parameters of state in the T = 373.15-673.15 K, p = 0.25-56 MPa and $\rho = 55-554$ kg/m³ rangers of temperature, pressure and density relatively. According to the hinge and salient points of the isochors at a phase p-Tplot they determined parameters of the LLV \leftrightarrow LL and LLV \leftrightarrow LV phase transitions (L means liquid, V—vapor). The p(T) dependence along a curve of LLV \leftrightarrow LL and LLV \leftrightarrow LV coexistence is described by a polynomial equation. Average relative deviation of the calculated p values versus the experimental data amounts to 0.1%. According to the 523.15–648.15 K isotherms authors got the $p-V_m$ – T-dependencies (V_m is the molar volume) for a vapor phase and a supercritical fluid of the named system in the p = 2.00-40.42 MPa and $\rho = 13.98-516.33 \text{ kg/m}^3$ ranges depending on water concentrations: $V_m(p,x)_T = \sum_{i=0}^{n} a_{ij} p^i x^j$, where the a_{ij} coefficients were determined using the least square method. Relative deviation of the calculated V_m values versus the experimental data amounts to 0.7 - 1.7%.