Dust particle rotation mechanisms in a glow discharge under the magnetic field action and their role in different ranges of magnetic field values

Dyachkov L G^{1,@}, Dzlieva E S², Novikov L A², Pavlov S I² and Karasev V Yu²

 ¹ Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg 2, Moscow 125412, Russia
² Saint-Petersburg State University, Universitetskaya Naberezhnaya 7/9,

Saint-Petersburg 199034, Russia

[@] dyachk@mail.ru

As is known, the main mechanisms of dust particle rotation in a glow discharge are ion drag and neutral gas drag. The ion drag results in a counterclockwise rotation of the dust structure if viewed in the direction of the magnetic field. The neutral gas drag rotates the dust structure in the opposite direction; this mechanism works if the dust structure is located at the striation head, where there is a region of the dust particle stable equilibrium. It is associated with the appearance of eddy currents in the striations and becomes predominant in magnetic fields $B \gtrsim 0.1$ T. In this communication, we discuss the role of these mechanisms in different magnetic field ranges and under different conditions.