Adiabatic and isothermal magnetocaloric effect in La(FeSi)₁₃ alloys

Kamantsev A $\mathbf{P}^{1,@},$ Koshkid'ko Yu S², Amirov A A³ and Aliev A \mathbf{M}^3

¹ Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia

 2 Institute of Low Temperature and Structure Research of the Polish Academy of Sciences, Okolna 2, Wroclaw 50-422, Poland

³ Amirkhanov Institute of Physics at the Dagestan Federal Research Center of the Russian Academy of Sciences, M. Yaragskogo 94, Makhachkala, Dagestan 367015, Russia

[@] kama@cplire.ru

The magnetocaloric effect (MCE) for the $LaFe_{13-x}Si_x$ alloys was studied at adiabatic ΔT and isothermal ΔQ conditions. The measurements were carried out in magnetic field of H = 18 kOe created by the commercial magnetic system based on Halbach structure (AMT&C). The maximum adiabatic temperature change in the LaFe_{11.78}Mn_{0.41}Si_{1.32}H_{1.6} alloy was detected at $T_0 = 274$ K in the cooling regime, and at $T_0 = 276$ K in the heating regime and amounted to $\Delta T = 4.5$ K in magnetic field of 18 kOe. The obtained values are comparable with MCE for other famous $LaFe_{13-x}Si_x$ alloys. The maximum isothermal heat for this alloy near $T_C = 275$ K at the cooling and heating regimes was $\Delta Q = 3400 \text{ J/kg}$ in magnetic field of 18 kOe. The obtained ΔQ values are in 2 times higher than the values for Gd in the same field. Also, measurements of the ΔQ -effect were carried out for the LaFe_{11.6}Si_{1.4} alloy, which exhibits the magnetostructural phase transition near $T_C = 190$ K. The maximum isothermal heat was found $\Delta Q = 3000 \text{ J/kg}$ near T_C in the cooling and heating regimes in field of 18 kOe. The obtained ΔQ values for the LaFe_{11.6}Si_{1.4} alloy turned out to be slightly lower than for the $LaFe_{11.78}Mn_{0.41}Si_{1.32}H_{1.6}$ alloy, which can be explained by the difference in the T_C temperatures.

This work made in the framework of the State task of Kotelnikov IRE RAS.