High-energy processes in super-strong laser fields

K. Z. Hatsagortsyan, A. Di Piazza, C. Müller, and C. H. Keitel

EMMI, 14-15 May 09, JIHT, Moscow
Content

• Radiation dominated dynamics in Thomson scattering
• Vacuum polarization in laser fields.
 Light-by-light diffraction. The role of the laser beam focusing
 Enhancement of vacuum polarization effects in plasma
 Photon merging in laser-proton beam collision.
• Pair production in counterpropagating laser beams.
 The role of photon momenta
• Laser-driven collider
Radiation dominated dynamics in Thomson scattering

Classical effect of radiation reaction / radiation damping.

EMMI, 14-15 May 09, JIHT, Moscow
Radiation dominated dynamics in Thomson scattering

Classical effect of radiation reaction / radiation damping.

Can radiation reaction effects be observable in strong laser fields?
Radiation dominated dynamics in Thomson scattering

Classical effect of radiation reaction / radiation damping.

Can radiation reaction effects be observable in strong laser fields?

Is the radiation reaction always perturbation?
Radiation dominated dynamics in Thomson scattering

Classical effect of radiation reaction / radiation damping.

Can radiation reaction effects be observable in strong laser fields?

Is the radiation reaction always perturbation?

Does exist an interaction regime when the electron dynamics is determined by the radiation reaction?
Radiation dominated dynamics in Thomson scattering

In non-relativistic classical electrodynamics the radiation reaction is perturbation:

\[m \ddot{\mathbf{v}} = e \mathbf{E} + \frac{e}{c}[v \mathbf{H}] + \frac{2e^2}{3c^3} \mathbf{v} \]

\[f = \frac{2e^3}{3mc^3} \dot{\mathbf{E}} + \frac{2e^4}{3m^2c^4}[\mathbf{EH}] \]

\[r_0 \ll \lambda \quad E \ll E_c / \alpha \]

perturbation conditions

\[r_0 \ll \lambda_c \ll \lambda \quad E \ll E_c \ll E_c / \alpha \]

the realm of the classical physics

\[\lambda_c = h / mc \]

- Compton wavelength
Radiation dominated dynamics in Thomson scattering

In non-relativistic classical electrodynamics the radiation reaction is perturbation:

\[m \ddot{v} = eE + \frac{e}{c}[vH] + \frac{2e^2}{3c^3} \dot{v}. \]

\[f = \frac{2e^3}{3mc^3} \dot{E} + \frac{2e^4}{3m^2c^4}[EH]. \]

Lorentz-Abraham-Dirac equation:

\[mc \frac{du^i}{ds} = \frac{e}{c} F_{ik} u_k + g^i. \]

\[g^i = \frac{2e^2}{3c} \left(\frac{d^2 u^i}{ds^2} - (u^i u^k) \frac{d^2 u_k}{ds^2} \right). \]

In relativistic electrodynamics the radiation reaction is perturbation in the rest frame.

\[\gamma E \ll E_c / \alpha \]
Radiation dominated dynamics in Thomson scattering

In non-relativistic classical electrodynamics the radiation reaction is perturbation

\[m \ddot{v} = eE + \frac{e}{c}[vH] + \frac{2e^2}{3c^3} \ddot{v}. \]
\[f = \frac{2e^3}{3mc^3} \dot{E} + \frac{2e^4}{3m^2c^4} [EH]. \]
\[r_0 \ll \lambda \]
\[E \ll E_c / \alpha \]

Lorentz-Abraham-Dirac equation:

\[mc \frac{du^i}{ds} = \frac{e}{c} F^{ik} u_k + g^i. \]
\[g^i = \frac{2e^2}{3c} \left(\frac{d^2 u^i}{ds^2} - (u^i u^k) \frac{d^2 u_k}{ds^2} \right). \]

In relativistic electrodynamics the radiation reaction is perturbation in the rest frame.

Landau-Lifshitz equation:

\[g^i = \frac{2e^3}{3mc^3} \frac{\partial F^{ik}}{\partial x^l} u_k u^l - \frac{2e^4}{3m^2c^5} F^{il} F_{kl} u^k + \frac{2e^4}{3m^2c^5} (F_{kl} u^l)(F^{km} u_m) u^i. \]
\[\gamma E \ll E_c / \alpha \]

EMMI, 14-15 May 09, JIHT, Moscow
Radiation dominated dynamics in Thomson scattering

In non-relativistic classical electrodynamics the radiation reaction is perturbation

\[m \ddot{\mathbf{v}} = e \mathbf{E} + \frac{e}{c} [\mathbf{v} \mathbf{H}] + \frac{2e^2}{3c^3} \dot{\mathbf{v}}. \]

\[f = \frac{2e^3}{3mc^3} \dot{\mathbf{E}} + \frac{2e^4}{3m^2c^4} [\mathbf{E} \mathbf{H}]. \]

\[r_0 \ll \lambda \quad \quad E \ll E_c / \alpha \]

Lorentz-Abraham-Dirac equation:

\[mc \frac{d\mathbf{u}}{ds} = \frac{e}{c} F^{ik} \mathbf{u}_k + g^i. \]

\[g^i = \frac{2e^2}{3c} \left(\frac{d^2 \mathbf{u}^i}{ds^2} - (\mathbf{u}^i \mathbf{u}^k) \frac{d^2 \mathbf{u}_k}{ds^2} \right). \]

In relativistic electrodynamics the radiation reaction is perturbation in the rest frame.

Landau-Lifshitz equation:

\[g^i = \frac{2e^3}{3mc^3} \frac{\partial F^{ik}}{\partial x^l} \mathbf{u}_k \mathbf{u}^l - \frac{2e^4}{3m^2c^5} F^{il} F_{kl} \mathbf{u}^k + \frac{2e^4}{3m^2c^5} (F_{kl} \mathbf{u}^l)(F^{km} \mathbf{u}_m) \mathbf{u}^i. \]

\[f_x = - \frac{2e^4}{3m^2c^4} \frac{(E_y - H_z)^2 + (E_x + H_y)^2}{1 - v^2/c^2} \]

\[f_{\text{rad}} / f_L \sim \alpha \gamma^2 E / E_c \sim 1 \]

EMMI, 14-15 May 09, JIHT, Moscow
Radiation dominated dynamics in Thomson scattering

In non-relativistic classical electrodynamics the radiation reaction is perturbation

\[m \ddot{v} = eE + \frac{e}{c}[vH] + \frac{2e^2}{3c^3} \ddot{v}. \]
\[f = \frac{2e^3}{3mc^3} \dot{E} + \frac{2e^4}{3m^2c^4}[EH]. \]

\[r_0 \ll \lambda \]

\[E \ll E_c / \alpha \]

Lorentz-Abraham-Dirac equation:

\[mc \frac{du^i}{ds} = \frac{e}{c} F_{ik} u_k + g^i. \]

\[g^i = \frac{2e^2}{3c} \left(\frac{d^2 u^i}{ds^2} - (u^i u^k) \frac{d^2 u_k}{ds^2} \right). \]

In relativistic electrodynamics the radiation reaction is perturbation in the rest frame.

Landau-Lifshitz equation:

\[g^i = \frac{2e^3}{3mc^3} \frac{\partial F_{ik}}{\partial x^l} u_k u^l - \frac{2e^4}{3m^2c^5} F^{il} F_{kl} u^k + \frac{2e^4}{3m^2c^5} (F_{kl} u^l)(F^{km} u_m) u^i. \]

\[f_x = - \frac{2e^4}{3m^2c^4} \frac{(E_y - H_z)^2 + (E_x + H_y)^2}{1 - v^2/c^2} \]

\[f_{rad} / f_L \sim \alpha \gamma^2 E / E_c \sim 1 \]

Radiation dominated regime
Radiation dominated regime in strong laser fields:

\[R = \frac{2}{3} r_0 \gamma_0 (1 + \beta_0) \xi^2 \omega / c \sim 1 \]

\[\delta \varepsilon_{rad} \sim \varepsilon_0 \]

\[\xi = eE / mc \omega \sim 1 \]

\[\gamma = 300, \xi = 100 (\varepsilon \sim 150 \text{ MeV}, I \sim 10^{22} \text{ W/cm}^2) \]

J. Koga et al. PP 12, 093106 (2005)
Radiation dominated dynamics in Thomson scattering

Radiation dominated regime in strong laser fields:

\[R = \left(\frac{2}{3} \right) r_0 \gamma (1 + \beta) \xi^2 \omega / c \sim 1 \]

\[\xi = eE / mc \omega \]

\[\delta \varepsilon_{rad} \sim \varepsilon_0 \quad \omega \tau \sim 1 \]

\[\gamma = 300 \quad \xi = 100 \quad (\varepsilon \sim 150 \text{ MeV}, \quad I \sim 10^{22} \text{ W/cm}^2) \]

J. Koga et al. PP 12, 093106 (2005)

\[\gamma_{\text{drift}} \sim \xi \sim \gamma_0 \gg 1 \]

\[\delta p_z \sim p_z \]

EMMI, 14-15 May 09, JIHT, Moscow
Radiation dominated dynamics in Thomson scattering

Exact solution of Landau-Lifshitz equation in a laser field:

\[R = \left(\frac{2}{3} \right) r_0 \gamma (1 + \beta) \xi^2 \omega / c \]

\[\xi = eE / mc \omega \]

\[u^{\mu}(\phi) = \frac{1}{h(\phi)} \left(\begin{array}{c} \gamma_0 + \frac{\omega_0}{2m\eta_0} [h^2(\phi) - 1 + \xi^2 I^2(\phi)] \\ 0 \\ -\beta_0 \gamma_0 + \frac{\omega_0}{2m\eta_0} [h^2(\phi) - 1 + \xi^2 I^2(\phi)] \\ -\xi I(\phi) \end{array} \right) \]

In this expression \(\eta_0 = \omega_0 \gamma_0 (1 + \beta_0) / m \) and

\[h(\phi) = 1 + R \int_{\phi_0}^{\phi} d\zeta \psi^2(\zeta), \quad E = E_0 \psi(\phi) \]

\[I(\phi) = \int_{\phi_0}^{\phi} d\zeta \left[h(\zeta) \psi(\zeta) + \frac{R}{\xi^2} \frac{d\psi(\zeta)}{d\zeta} \right] \]
Radiation dominated dynamics in Thomson scattering

Exact solution of Landau-Lifshitz equation in a laser field:

\[R = \frac{2}{3} r_0 \gamma (1 + \beta) \xi^2 \omega / c \]

\[\xi = eE / mc \omega \]

\[u^\mu (\phi) = \frac{1}{h(\phi)} \begin{pmatrix} \gamma_0 + \frac{\omega_0}{2m\eta_0} [h^2(\phi) - 1 + \xi^2 I^2(\phi)] & 0 \\ -\beta_0 \gamma_0 + \frac{\omega_0}{2m\eta_0} [h^2(\phi) - 1 + \xi^2 I^2(\phi)] & -\xi I(\phi) \end{pmatrix} \]

In this expression \(\eta_0 = \omega_0 \gamma_0 (1 + \beta_0) / m \) and

\[h(\phi) = 1 + R \int_{\phi_0}^{\phi} d\zeta \psi^2(\zeta), \quad E = E_0 \psi(\phi) \]

\[I(\phi) = \int_{\phi_0}^{\phi} d\zeta \left[h(\zeta) \psi(\zeta) + \frac{R}{\xi^2} \frac{d\psi(\zeta)}{d\zeta} \right], \]

\[R \ll 1 \]

\[u_y(\phi) > 0 \]

\[2R \xi^2 g(\phi) > 4 \gamma^2 - \xi^2 I_0^2(\phi) > 0 \]

\[I \approx I_0(\phi) + R g(\phi) \]

Radiation dominated dynamics in Thomson scattering

Radiation dominated regime in strong laser fields:

\[\frac{\delta \varepsilon_{\text{rad}}}{\varepsilon_0} \sim 1, \quad \omega \tau \sim 1 \]

\[R = \left(\frac{2}{3} \right) r_0 \gamma (1 + \beta) \xi^2 \omega/c \sim 1 \]

\[\xi = eE/mc \omega \]

\[\gamma = 300, \quad \xi = 100 \quad (\varepsilon \sim 150 \text{ MeV}, \quad I \sim 10^{22} \text{ W/cm}^2) \]

J. Koga et al. PP 12, 093106 (2005)

Radiation dominated dynamics:

\[\gamma_{\text{drift}} \sim \xi \sim \gamma_0 \]

\[\delta p_z \sim p_z \]

at \(R \ll 1 \)

\[R \sim \left(4 \gamma_0^2 - \xi^2 \right) / 2 \xi^2 \]

\[\gamma = 80, \quad \xi = 150 \quad (\varepsilon \sim 40 \text{ MeV}, \quad I \sim 5 \times 10^{22} \text{ W/cm}^2) \]

EMMI, 14-15 May 09, JIHT, Moscow
Radiation dominated dynamics in Thomson scattering

Electron trajectory

Maximum of intensity at $\theta=80^\circ$

$\gamma=80$ $\xi=150$

($ I \approx 5 \times 10^{22}$ W/cm2)

$\pi \gamma^2 v/\omega_c \approx \rho/\gamma$

Angle resolved radiation spectra

Dependence on the electron position in laser focus

$w_0=2.5 \mu$m

EMMI, 14-15 May 09, JIHT, Moscow
Radiation dominated dynamics in Thomson scattering

Electron trajectory

Maximum of intensity at $\theta=80^\circ$

- 10^9 electrons in beam
- 10^4 photons per pulse
- 1% of electrons contribute

Angle resolved radiation spectra

Dependence on the electron position in laser focus

EMMI, 14-15 May 09, JIHT, Moscow
Quantum vacuum is a region of space-time which contains no real particles (electrons, positrons, photons etc). Virtual particles are present:

$$\delta x \sim \lambda_c = h/mc \approx 3.86 \times 10^{-11} \text{ cm}$$
$$\delta t \sim h/mc^2 \approx 10^{-21} \text{ s}$$
Vacuum polarization in laser fields

Quantum vacuum is a region of space-time which contains no real particles (electrons, positrons, photons etc)

Virtual particles are present:

$$\delta x \sim \lambda_c = \frac{\hbar}{mc} \approx 3.86 \times 10^{-11} \text{ cm}$$

$$\delta t \sim \frac{\hbar}{mc^2} \approx 10^{-21} \text{ s}$$

$$eE\lambda_c = mc^2$$

$$E = E_c = m^2c^3/\epsilon h = 1.3 \times 10^{16} \text{ V/cm}$$

$$I_c = cE_c^2/8\pi = 2.3 \times 10^{29} \text{ W/cm}^2$$

EMMI, 14-15 May 09, JIHT, Moscow
Quantum vacuum is a region of space-time which contains no real particles (electrons, positrons, photons etc).

Virtual particles are present:

\[\delta x \sim \lambda_c = \frac{h}{mc} \approx 3.86 \times 10^{-11} \text{ cm} \]

\[\delta t \sim \frac{h}{mc^2} \approx 10^{-21} \text{ s} \]

\[\xi = e \sqrt{A_{\mu} A^{\mu} / mc^2} = eE \lambda_c / \omega \]

\[\xi = 1 / \omega \tau ; \tau = m / eE \]

\[\chi = \frac{e \sqrt{(F_{\mu \nu} p^{\nu})^2}}{(mc^2)(mc)} \lambda_c = \frac{eE \lambda_c}{mc^2} \bigg|_{r.f.} = \frac{E}{E_{cr}} \bigg|_{r.f.} \quad \text{or} \quad \frac{\Omega}{m} \frac{E}{E_{cr}} \bigg|_{r.f.} \]
Vacuum polarization in laser fields

Quantum vacuum is a region of space-time which contains no real particles (electrons, positrons, photons etc).

Virtual particles are present:

\[\delta x \sim \lambda_c = \frac{\hbar}{mc} \approx 3.86 \times 10^{-11} \text{ cm} \]

\[\delta t \sim \frac{\hbar}{mc^2} \approx 10^{-21} \text{ s} \]

\(\xi \) is the multiphoton parameter

\[\xi = e \sqrt{A_\mu A^\mu} / m = e E \lambda_c / \omega \]

\[\xi = 1 / \omega \tau ; \tau = m / eE \]

\(\chi = 1, I \approx 10^{29} \text{ W/cm}^2 \)

Spontaneous electron-positron pair production

\(\chi < 1 \) vacuum is stable, however electron-positron pair exist virtually during the Heisenberg uncertainty time.

EMMI, 14-15 May 09, JIHT, Moscow
Vacuum polarization in laser fields

Quantum vacuum is a region of space-time which contains no real particles (electrons, positrons, photons etc)

Virtual particles are present:

$$\delta x \sim \lambda_c = \frac{\hbar}{mc} \approx 3.86 \times 10^{-11} \text{ cm}$$

$$\delta t \sim \frac{\hbar}{mc^2} \approx 10^{-21} \text{ s}$$

$$\xi$$ is multiphoton parameter

$$\xi = e \sqrt{A_\mu A^\mu / m} = eE \frac{\lambda_c}{\omega}$$

$$\xi = 1 / \omega \tau ; \tau = m / eE$$

$$\chi = 1, I \approx 10^{29} \text{ W/cm}^2$$

Spontaneous electron-positron pair production

$$\chi < 1$$ vacuum is stable, however electron-positron pair exist virtually during the Heisenberg uncertainty time

$$\eta = \chi / \xi = (kk_0) / m^2 = 2 \omega \omega_0 / m^2$$
Vacuum polarization in laser fields

Quantum vacuum is a region of space-time which contains no real particles (electrons, positrons, photons etc)

Virtual particles are present:

\[\delta x \sim \lambda_c = h/mc \approx 3.86 \times 10^{-11} \text{ cm} \]
\[\delta t \sim h/mc^2 \approx 10^{-21} \text{ s} \]

\(\xi \) is multiphoton parameter

\[\xi = e \sqrt{A_\mu A^\mu} / m = eE \lambda_c / \omega \]

\[\xi = 1/\omega \tau ; \tau = m/eE \]

\(\chi = 1, I \approx 10^{29} \text{ W/cm}^2 \)

Spontaneous electron-positron pair production

\(\chi < 1 \) vacuum is stable, however electron-positron pair exist virtually during the Heisenberg uncertainty time

Vacuum is polarizable

\[\eta = \chi/\xi = (kk_0)/m^2 = 2 \omega \omega_0 / m^2 \]
Vacuum polarization in laser fields

Quantum vacuum is a region of space-time which contains no real particles (electrons, positrons, photons etc). Virtual particles are present:

\[\delta x \sim \lambda_c = h/m_c \approx 3.86 \times 10^{-11} \text{ cm} \]
\[\delta t \sim h/m_c^2 \approx 10^{-21} \text{ s} \]

\[\xi = e \sqrt{A_\mu A^\mu/m} = eE \lambda_c/\omega \]
\[\xi = 1/\omega \tau ; \tau = m/eE \]

\[\chi = \frac{e \sqrt{(F_{\mu\nu} p^\nu)^2}}{(mc^2)(mc)} \lambda_c = \frac{eE \lambda_c}{mc^2} \left| \text{r.f.} \right. = \frac{E}{E_{cr}} \left| \text{r.f.} \right. \quad \text{or} = \frac{\Omega}{m} \frac{E}{E_{cr}} \left| \text{r.f.} \right. \]

\[\eta = \chi/\xi = (kk_0)/m^2 = 2 \omega \omega_0/m^2 \]

\(\chi = 1, \left| I \right| \approx 10^{29} \text{ W/cm}^2 \)

Spontaneous electron-positron pair production \(E/E_c \) and \(\omega/m \)

\(\chi < 1 \) vacuum is stable, however electron-positron pair exist virtually during the Heisenberg uncertainty time.

Vacuum is polarizable
Light-by-light diffraction

Euler-Heisenberg Lagrangian density:

\[
L = \frac{1}{2} (E^2 - B^2) + \frac{2\alpha^2}{45m^4} \left[(E^2 - B^2)^2 + 7(\vec{E} \cdot \vec{B})^2 \right]
\]

Polarization current:

\[
\nabla^2 \vec{E} - \partial_t^2 \vec{E} = \vec{J}; \quad \vec{J} \propto F^3
\]
Interaction of an x-ray beam with a strong standing wave

In far zone the probe diffraction is important

Di Piazza et al. PRL 97, 083603 (2006)
Interaction of an x-ray beam with a strong standing wave

In far zone the probe diffraction is important

In near zone: \(2\varepsilon = \omega l (n_\perp - n_\parallel) \sin 2\theta\)

In far zone: \((D_0 D_p)^{1/2}\) times smaller

\[D_0 = \frac{w_0^2}{z\lambda_p} \ll 1\]

\[D_p = \frac{w_p^2}{z\lambda_p} \ll 1\]

Probes polarization before the interaction

Probes polarization after the interaction

Di Piazza et al. PRL 97, 083603 (2006)

EMMI, 14-15 May 09, JIHT, Moscow
Interaction of an x-ray beam with a strong standing wave

In far zone the probe diffraction is important

In near zone: \(2\varepsilon = \omega l (n_\perp - n_\parallel) \sin 2\theta\)

In far zone: \((D_0 D_p)^{1/2}\) times smaller

\[D_0 = \frac{w_0^2}{z\lambda_p} \ll 1\]
\[D_p = \frac{w_p^2}{z\lambda_p} \ll 1\]

Di Piazza et al. PRL 97, 083603 (2006)

EMMI, 14-15 May 09, JIHT, Moscow
Enhancement of vacuum polarization effects in plasma

When a strong laser pulse propagates through plasma near the threshold of the plasma transparency the vacuum polarization effects are enhanced.

In the proximity of this singular point $\omega \rightarrow \omega_p$, the plasma refractive index tends to zero, the field increases and the vacuum refractive index becomes more visible.

\[n^2 = \varepsilon \mu \approx \varepsilon_p + \frac{2\alpha}{45\pi} \frac{E^2}{E_{cr}^2} \left(1 - \varepsilon_p^2 \right) \]

\[\varepsilon_p = 1 - \frac{\omega_p}{\omega^2} \]

In plasma:
\[\varepsilon_p \rightarrow 0 \Rightarrow n_{pl} \approx \sqrt{\frac{2\alpha}{45\pi} \frac{E^2}{E_{cr}^2}} \]

In vacuum:
\[\varepsilon_p \rightarrow 1 \Rightarrow n_{vac} \approx 1 + \frac{\alpha}{45\pi} \frac{E^2}{E_{cr}^2} \]

\[n_{pl} \gg n_{vac} \]

Di Piazza et al. PP 14, 032102 (2007)
VPEs in a plasma (approach)

Equations of a two-fluids, cold, collisional and relativistic plasma including VPEs

\[\partial \cdot \mathbf{E} = -e(N_e - ZN_i) + \rho_{vac}, \]
\[\partial \cdot \mathbf{B} = 0, \]
\[\partial \times \mathbf{E} + \partial_t \mathbf{B} = 0, \]
\[\partial \times \mathbf{B} - \partial_t \mathbf{E} = -e(N_e \mathbf{v}_e - ZN_i \mathbf{v}_i) + \mathbf{J}_{vac}, \]
\[\partial_t N_e + \partial \cdot (N_e \mathbf{v}_e) = 0, \]
\[\partial_t N_i + \partial \cdot (N_i \mathbf{v}_i) = 0, \]

VPEs can be described mathematically as a ‘current’ but it contains no particles quantities like velocity. It contains only the electromagnetic field to the third power.

\[\partial_t \mathbf{p}_e + (\mathbf{v}_e \cdot \partial)\mathbf{p}_e = -e(\mathbf{E} + \mathbf{v}_e \times \mathbf{B}) - \nu_e m_r (\gamma_e \mathbf{v}_e - \gamma_i \mathbf{v}_i) \]
\[\partial_t \mathbf{p}_i + (\mathbf{v}_i \cdot \partial)\mathbf{p}_i = Ze(\mathbf{E} + \mathbf{v}_i \times \mathbf{B}) - \nu_i m_r (\gamma_i \mathbf{v}_i - \gamma_e \mathbf{v}_e) \]

Collisional effects are important in the regime we are interested in but for simplicity they are neglected here (they can be treated perturbatively).

EMMI, 14-15 May 09, JIHT, Moscow
A possible (ideal) experimental setup

Laser data: \(\omega = 1 \text{ eV} \)
- \(I_{0,1} = 7 \times 10^{21} \text{ W/cm}^2 \)
- \(I_{0,2} = 3 \times 10^{22} \text{ W/cm}^2 \)

Plasma data:
- \(Z = 46 \) (palladium)
- \(N_{0,1} = 10^{23} \text{ cm}^{-3}, N_{0,2} = 2I_{0,1} \)
- \(L = 100 \mu\text{m}, n_{p0} = 5 \times 10^{-2} \)

Numerical results and comments:

Rotation of laser polarization: \(6.8 \times 10^{-8} \text{ rad} \) (more than one order of magnitude with respect to the case of diffraction)

Measurable nowadays

Large densities required because we require close to plasma frequency and high laser intensities

\[
\Delta n_{pl} = \frac{\alpha}{45\pi} \frac{E_2^2 - E_1^2}{E_{cr}^2} \left(1 - \frac{n_{pl,0}^2}{2n_{pl,0}}\right)^2
\]

EMMI, 14-15 May 09, JIHT, Moscow
Photon fusion during laser and proton beam collision

\[\Omega \approx 2\gamma \omega_L; \quad E \approx 2\gamma E_L \]
\[\Omega \sim m; \quad E \sim E_{cr} \]

Nonliner QED

\[\chi = \frac{2\Omega}{m} \frac{E}{E_{cr}} \gg 1 \]

Di Piazza et al. PRL 97, 083603 (2006); PRA 78, 062109 (2008)

EMMI, 14-15 May 09, JIHT, Moscow
Photon fusion during laser and proton beam collision

\[\Omega \approx 2 \gamma \omega_L; \quad E \approx 2 \gamma E_L \]
\[\Omega \sim m; \quad E \sim E_{cr} \]

Nonlinear QED
\[\chi = \frac{2 \Omega}{m} \frac{E}{E_{cr}} \gg 1 \]

Perturbative:
\[c_n \sim \chi^{2n} \]

Nonperturbative:
\[c_n \sim \chi^{2/3} \]

Opening of multiphoton channels:
\[R_n \sim 1/n^5 \]
Proton beam \hspace{1cm} Laser beam

Tevatron: Proton energy 980 GeV; \(N_p = 10^{11} \)

XUV Laser: \(I = 4 \times 10^{22} \) W/cm\(^2\), \(\omega = 70 \) eV

Second harmonic: 500 events/h
4th: 7 events/h

LHC: Proton energy 7 TeV; \(N_p = 10^{11} \)

Laser: \(I = 3 \times 10^{22} \) W/cm\(^2\), IR

Second harmonic: 400 events/h
4th: 6 events/h

EMMI, 14-15 May 09, JIHT, Moscow
Pair creation in counterpropagating laser waves

\[A = A_0 \left[\sin(wt - kz) + \sin(wt + kz) \right] = 2A_0 \sin(wt) \cos(kz) \]

Dipole approximation \(\cos(kz) \approx 1 \) and \(B=0 \) is applicable only if

\[l_c << \lambda \Rightarrow \xi = \frac{eE}{m\omega} >> 1 \]

\[l_c \sim \frac{m}{eE} \text{ is the pair formation length} \]

For XFEL/Compton radiation sources \(\omega \leq m \) and \(\xi \leq 1 \), the DA is not valid.

EMMI, 14-15 May 09, JIHT, Moscow
Overview: Pair creation in an oscillating electric field

- Pure two level system due to momentum conservation
 \[q_0(p) = \frac{1}{T} \int_0^T dt \sqrt{(p - eA(t))^2 + m^2} \]
 \[m^* \equiv q_0(p = 0) \approx 1.21m \quad \text{for} \quad \xi = 1 \]

- Rabi-oscillations

- Resonances enforced by energy conservation
 \[2q_0(0) = n\omega \]

\[w_n \sim \hat{J}_n(U_p) \]
\[n = m + U_p \]
\[U_p = a m\xi^2 \]
\[n < U \]
\[\xi \gg 1, \quad w_n \sim e^{-Ec/E} \]

see, e.g. V. S. Popov,
JETP Lett. 18, 255 (1973) etc
EMMI, 14-15 May 09, JIHT, Moscow
The influence of the magnetic-field component

The resonance peaks are shifted and split, due to non-zero photon momentum: For example, \(n = 5 = 3 \) (from left) + 2 (from right) = 4 + 1

\[
\omega = m^* (n_+ + n_-) / 2n_+ n_-
\]

M. Ruf et al. PRL 102, 080402 (2009)

EMMI, 14-15 May 09, JIHT, Moscow
The influence of the magnetic-field component

\[\omega = m_+ (n_+ + n_-) / 2n_+ n_- \]
Laser-driven collider

\[L = \left[\frac{N_e(N_e - 1)}{a_b^2} + \frac{N_e}{a_w^2} \right] f \]

Luminosity is enhanced due to the coherent component

\[r = 1 \text{ fm} = 10^{-13} \text{ cm} \]

\[\varepsilon \sim \frac{\text{ch}}{r} \sim 1 \text{ GeV} \]

\[L \sim 10^{26} - 10^{27} \text{ cm}^{-2} \text{ s}^{-1} \]

Laser wakefield accelerators? \[L \sim 10^{21} \text{ cm}^{-2} \text{ s}^{-1} \]

B. Henrich et al. PRL 93, 013601 (2004)
K. Hatsagortsyan et al. EPL 76, 29 (2006)

EMMI, 14-15 May 09, JIHT, Moscow
Laser-driven collider

\[r = 1 \text{ fm} = 10^{-13} \text{ cm} \]
\[\varepsilon \sim \frac{\text{ch}}{r} \sim 1 \text{ GeV} \]
\[L \sim 10^{26} - 10^{27} \text{ cm}^{-2} \text{ s}^{-1} \]

Laser wakefield accelerators? \(L \sim 10^{21} \text{ cm}^{-2} \text{ s}^{-1} \)

Luminosity is enhanced due to the coherent component

B. Henrich et al. PRL 93, 013601 (2004)
K. Hatsagortsyan et al. EPL 76, 29 (2006)
Laser-driven collider

Short recollision time ~ T/2
Wave packet spreading is not large: \(a_0 < 4a_B \)
Scattering energy: \(mc^2 \xi \)

Coherent collisions with Ps: \(N_{Ps} < (a_b/a_w)^2 \sim 10^{11} \)
Reaction events per pulse: \(10^{-7} \) at \(N_{Ps} = 10^7 \); \(n=10^{15} \) cm\(^{-3}\)
\(10^{-4} \) at \(n=10^{18} \) cm\(^{-3}\)
One reaction event per sec at \(f=1 \) kHz
Eff. Luminosity: \(L_{eff} = 10^{24}-10^{27} \) cm\(^{-2}\)s\(^{-1}\)

Incoherent collisions with e+e- plasma:
Reaction events per pulse: \(10^{-9} \) at \(n = 10^{15} \) cm\(^{-3}\); \(\tau=30 \) fs

EMMI, 14-15 May 09, JIHT, Moscow
Conclusion

EMMI, 14-15 May 09, JIHT, Moscow
Conclusion

Radiation dominated dynamics below $R << 1$
Conclusion

Radiation dominated dynamics below $R << 1$

Diffraction decreases the ellipticity due to vacuum polarization

EMMI, 14-15 May 09, JIHT, Moscow
Conclusion

Radiation dominated dynamics below $R<<1$

Diffraction decreases the ellipticity due to vacuum polarization

Enhancement of the visibility of vacuum polarization effect in plasma

EMMI, 14-15 May 09, JIHT, Moscow
Conclusion

Radiation dominated dynamics below $R \ll 1$

Diffraction decreases the ellipticity due to vacuum polarization

Enhancement of the visibility of vacuum polarization effect in plasma

Photon merging in laser-proton beam collision

EMMI, 14-15 May 09, JIHT, Moscow
Conclusion

Radiation dominated dynamics below $R \ll 1$

Diffraction decreases the ellipticity due to vacuum polarization

Enhancement of the visibility of vacuum polarization effect in plasma

Photon merging in laser-proton beam collision

Autler-Towns effects in pair production process in counterpropagating laser pulses

EMMI, 14-15 May 09, JIHT, Moscow
Conclusion

Radiation dominated dynamics below $R \ll 1$

Diffraction decreases the ellipticity due to vacuum polarization

Enhancement of the visibility of vacuum polarization effect in plasma

Photon merging in laser-proton beam collision

Autler-Towns effects in pair production process in counterpropagating laser pulses

Laser-driven collider; muon production

EMMI, 14-15 May 09, JIHT, Moscow
Thank you for your attention