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ABSTRACT 
A depth averaged two-dimensional flow-pollutants coupled model is developed to evaluate impacts of 

industrial effluents on water environment with the framework of finite volume method (FVM) on an 
unstructured grid. The model employs Osher-type approximate Riemann solver to estimate the numerical flux of 
variables across the interface between cells and transfers 2-D problem into solving a series of local 1-D problem. 
The model is applied to calculate the hydrodynamic field of a Bay. The result agrees well with the measurements 
and represents the wet area and dry area changing under the tidal flow successfully. Further more, the model is 
used to forecast the diffusion area of thermal discharge with the tidal current from a power plant. 
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INTRODUCTION 

The shallow-water equations are typically used to model river hydrodynamics and estuarine and 
coastal circulation. Many of these applications involve moving boundary and uneven bottom topography, 
and simulating these processes is becoming increasingly important. For regular geometries with simple 
boundaries, good results can be obtained with current numerical techniques (Chen, 1986). The classical 
method to treat irregular geometries in Cartesian coordinates is to use additional nodes from the 
intersection of the irregular geometry boundary and the Cartesian coordinates (Lapidus and Pinder, 1982). 
An improved method of computing flow field involving irregular geometries using a Cartesian grid was 
proposed by Chen et al. (1993) and is further developed by Fang and Liu (2006). 

The application of finite volume method (FVM) to the numerical modeling of shallow water flows 
began in the 1980s�and it was further developed in the late 1990s. The FVM has advantages over the finite 
difference method (FDM) and the finite element method (FEM), because FVM is suit for unstructured grid 
and synthesizes the simplicity and high efficiency of FDM and the geometry ability of FEM. Moreover, 
FVM solves the integral form of the conservation equations�which can maintain the balance of the amount 
of mass and momentum. This method does not demand a continuous computational domain. 

The reason of adopting unstructured grids is that these grids have more ability to fit the boundary and 
underwater geometry. The boundary of natural water and underwater geometry is so irregular that satisfied 
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structured grid is hard to get even though the desired level is not high. Unstructured gird is adopted in 
computational fluid dynamics more and more in recent years. They have universality in the fitness of 
computational domain.  

In estuaries, the boundary of computational domain dynamically changes with the fluctuation of tide. 
The model must have an ability to capture this dynamic boundary while simulating quantum in these areas. 
FVM can be used for the calculation of tidal currents�Alcrudo and Garcia-Navarro�1993�Balzano�1998�. 
The modeling of tidal currents has such unique features as a large computational domain�complicated 
terrain conditions�and complex open boundary conditions. The finite volume method has been used to 
discretize the governing equations�and the space and time integral schemes are always the first-order 
schemes�Wang and Zhang�1997�Xia�2002�. The regular rectangular grids are usually used in the 
published literature. With the development of calculating schemes of FVM and the methods of grid 
generation�many new numerical models of FVM have been introduced into the simulation of tidal currents. 

GOVERNING EQUATIONS 
The conservation form of continuity equation and momentum equation for two-dimensional shallow 

water flows represents, 
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where, [ ]hChvhuhq ,,,=  is a conservative quantum;  
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( )qf  is flux in x direction; ( )qg  is flux in y direction; ( )qb  is a source term. 
in which, h is water depth; u and v are depth-averaged horizontal velocity part in x and y directions, 

respectively; g  is gravity acceleration; 
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DISCRETIZATION OF EQUATIONS  
In irregular computational domain, Eq. (1) is solved by using finite volume method based on 

unstructured grid. If a matrix is defined as ( ) ( ) ( )[ ]TqgqfqF ,= and integration on an arbitrary shaped 
element is evaluated for Eq. (1), one can get the basic formula for FVM, 
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where, n is the unit outward normal vector of element boundary; ωd  and dl  are surface integral and 
linear integral, respectively. nqF ⋅)(  is flux in n direction, signed as )(qfn . For one-order scheme, q is 



 

assumed as a constant in each element. Thus, according to divergence theorem, Eq. (2) can be discretized 
as, 
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where, jL  is the length of the j-th edge of a element. For an element having m edges, the first term in right 
hand can be written as a summary of m terms. Each term equals the product of the normal flux ( )(qfn ) of a 
function to be integrated across each edge of an element and the edge length.  
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Fig. 1 A sketch of a finite volume Ω 

If the angle between n direction and x axis is assumed to be Φ , which is shown in Fig. 1, one can get, 

)(sin)(cos)( qgqfqfn ⋅Φ+⋅Φ=                                  (4) 

According to the rotational invariance of function f and g, the following expressions are satisfied. 

)(])([)()( qfqTfqfT n =Φ=Φ                             (5) 

or  )()()( 1 qfTqfn
−Φ=   

where, )(ΦT  is a transformational matrix about rotational angle Φ , and 1)( −ΦT  is a inverse 
transformational matrix. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Φ
Φ−

Φ
Φ

=Φ

1
0
0
0

0
cos
sin
0

0
sin
cos

0

0
0
0
1

)(T  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ΦΦ−
ΦΦ

=Φ=Φ −

1000
0cossin0
0sincos0
0001

)()( 1 TTT  

The conservative quantum, vector q, transforms to qTq )(Φ=  through this transformational 

transformation, in which, q  is a vector in the normal direction of an element edge. Through these 



 

projections and transformations, )(qg  disappears. So these two-dimensional problems changes into 

one-dimensional problems. The only work is to calculate )(qf . This makes the scheme more efficient. 

Substituting Eq. (5) into Eq. (3), the final discretized FVM equation leads to, 
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Because the value of q  or q  may not equal in both sides of one element edge, namely the value of q  

or q  may has a discontinuity at the interface of a element, the solution of normal flux ( )(qf ) becomes a 
one-dimensional Riemann problem. 

NORMAL NUMERICAL FLUX 
Local one-dimensional Riemann problem is an initial-value problem. Its governing equation is, 
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Rqq =     �  0>x � 0=t �  

The origin of axis x  is located at this edge and this axis points outward to normal direction. In Eq. 
(7), ThCvhuhhq ),,,(= ; Lq  and Rq  are the value of vector q  on left and right side of element edge. 

The expression of outward normal flux at origin when += 0t  under yx −  coordinate system can be 

attained by solving this Riemann problem. And it is assigned as ),( RLLR qqf . Conducting an inverse 

rotational transformation on ),( RLLR qqf , one can get the flux )(qfn  across element edge under yx −  
coordinate system. 

BOUNDARIES 
Above methodology is only suit for calculating normal numerical flux at the inner element edge within 

the computational domain. When the element edge is on the boundary of computational domain or object 
boundary such as hydraulic structure, flux calculation becomes to boundary Riemann questions. In this case, 

Lq  is a known state in computational domain, while Rq  is unknown. Generally, Rq  is determined by 
choosing a suitable relationship between outputs in normal direction or specified boundary condition 
according to local fluid state. 

Open boundary 
(1)Given water elevation Rh  

Deducing from LLRR ghughu 22 +=+ , one can get, 

LRRLLR vvhhguu =−+= ),(2                            (8) 

(2)Given unit discharge RQ  

Rh  and Ru  can be obtained by solving equations 
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where, LR vv = � 
(2)Given stage-discharge relation 
If the stage-discharge relation )( RR hfQ =  at boundary is known, Rh  and Ru  can be achieved by 

solving equations 
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where, LR vv = � 

Land boundary 
A land boundary at the interface of an element represents that no current flows across this boundary. 

This state can be described as, 
LR uu −=      LR vv =      LR hh =                           (11) 

TEMPERATURE DIFFUSIVITY EQUATIONS 
The conservation equation governing movement of warm flows is, 
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where, TΔ  is temperature increment of water body; ixD  and iyD  are diffusion coefficients in x and y 

direction, respectively; K is a combined coefficient of heat transfer at water surface; PC  is the specific 
heat of water which is given as 1000 /cal kg Co , ρ  is water density; and iS  is source term. 

a. Diffusion coefficient 
ghiDi 25.0=                                           (13) 

in which, i is water slope. 

b. Combined coefficient of heat transfer at water surface 

215.7+(0.515-0.00425 ( - )+5.1E-5 ( - ) ) (70+0.7 2)s 0 s 0 sK T T T T W= × × × ×                 (14) 

in which, sW  is wind velocity; sT  is water temperature; 0T  is dew-point temperature. 

CALCULATION EXAMPLE 
The model developed above was applied to Dongshan Bay in Fujian, China. In order to simulate the 

flow dynamic field in computational domain accurately, calibration and validation are performed in this 
model. The calibration involves processes of tide line, flow velocity and flow direction in some typical 
spring tides, moderate tides and neap tides that are measured in plant boundary seas at 12 tide stations in 
2008. The locations of 12 main stations in computational domain are shown in Fig.2. 

The test period of time of spring tides, moderate tides and neap tides is listed as follows: 

Spring tides: from 12:00 on July 5th, 2008 to 15:00 on July 6th 



 

Moderate tides: from 10:00 on July 8th, 2008 to 12:00 on July 9th 

Neap tides: from 7:00 on July 12th, 2008 to 10:00 on July 13th 

The comparisons of tide line, flow velocity and flow direction between calculation and measurement are 
illustrated in Fig.3-5. 

 
Fig.2 the locations of tide stations in computational domain 

 

 

 
Fig.3 comparisons of tide line 
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Fig.4 comparisons of flow velocity and flow direction under spring tide at 1# 

 

 

 
Fig.5 comparisons of flow velocity and flow direction under spring tide at 2# 

 
The test model is applied to calculate the hydrodynamic field and heat transfer of the Bay. These 

simulation results including flow velocity field and temperatures of intake under various scenarios are 
illustrated in Fig. 6-8. 
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Fig.6 Calculated flow velocity field at 17:00 maximum ebb on July 5th 
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Fig.7 Calculated flow velocity field at 0:00 maximum rise on July 6th 

 
It can be seen from the figures 6-8 that the character of calculated flow field agrees with the observation 

results from stations. The flow of outer sea forms reciprocating currents directing from southwest to 
northeast. Current flows into inner bay in spring tide. The main stream pools in channels on two sides with 
its average velocity beyond 1.0m/s. The velocity near intakes is also high. For heat transfer, the intake 
channel prevents the heat flow from dispersing toward north side. 

CONCLUSIONS 
This paper presents a depth averaged two-dimensional flow-pollutants coupled model. This model uses 

finite volume method with unstructured grid. The diffusion area of thermal discharge with the tidal current 
from a power plant in Zhangzhou is forecasted using this two-dimension model. The calibration for tide 
current field presents that the calculated tide line, fixed point flow velocity and flow direction agrees well 
with the original measurements and the flow state in computational domain squares with the fact observed. 
All these results show the capable of this model in simulating the flow dynamics and heat transfer in this 
region.  



 

 

 

 

 
Fig.8 Temperature-time profile of intake under open channel scenario 
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