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ABSTRACT 

A numerical strategy is proposed for a viscous uniform flow past a 2-D partially cavitating hydrofoil placed at a 
finite depth from the free surface. The flow was modeled by the Reynolds-averaged Navier-Stokes (RANS) 
equations. A finite-volume method with the SIMPLE scheme and k-ε turbulence model were employed for 
computations. The “full cavitation model,” which included the effects of vaporization, noncondensible gases and 
compressibility, was incorporated in the computation of cavitating flow. The cavity shape and free surface were 
updated iteratively till a reasonable convergence was reached. As for the determination of the free surface, the VOF 
approach was adopted. The test cases show the accuracy and stability of our procedure to capture the cavitating flow 
near the free surface. 
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INTRODUCTION 
Due to its complicated physics, cavitation is an interesting and challenging flow problem for scientists 

and engineers. Phenomena involved in cavitation are usually highly nonlinear, unsteady, transient, 
multi-phase, mixing, and phase changing. Furthermore, in many practical applications, the device or 
vehicle which may induce cavitation operates within a finite water depth. The effects due to the free 
surface are usually not negligible. This fact makes the physics even more complicated and the analysis 
more time-consuming when the computational approach is taken in the study. 

The pioneering study of cavitation near the free surface is primarily within the linear and inviscid 
scope. The conformal mapping technique is the main solution procedure. Due to its inherent mathematical 
properties, such an approach is restricted to two-dimensional problems. Applying the linearized cavitating 
flow theory developed for an infinite depth, Johnson (1961) pioneered the design of supercavitating 
hydrofoils operating at a finite depth and zero cavitation number. Meanwhile, Auslaender (1962) 
employed the linearized cavity flow theory and a mapping technique to study general characteristics of 
two-dimensional supercavitating or fully ventilated hydrofoils for operation near a free surface. 
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Later, the development of lifting-line and lifting-surface theories enables one to extend the study to 
three-dimensional linearized problems. Nishiyama and Miyamoto (1969) used a lifting-surface theory to 
take into account the three-dimensional effects. Nishiyama (1970) provided another solution procedure 
based on the lifting line method. Both of them are fully linearized theories and only applicable to the flow 
at small angles of attack and small cavitation numbers. In addition, they did not consider the effects due to 
the thicknesses of the body and the cavity. 

With the progress of the theoretical development, the nonlinear theories soon dominated the study of 
the cavitating flow near the free surface. Larock and Street (1967) employed the conformal mapping 
approach to calculate the supercavitating flat-plate hydrofoil. Later, Furuya (1975a) developed an iterative 
procedure to investigate the two-dimensional gravity-free flow past supercavitating hydrofoils. The 
thickness effects of the body and/or the cavity were taken into account. The results were more accurate, 
compared to those obtained by the linearized theory. In addition, Furuya (1975b) also investigated the 
three-dimensional flow past a supercavitating hydrofoil of large aspect ratio. He treated the flow near the 
foil as two-dimensional and introduced a three-dimensional correction based on Prandtl’s lifting-line 
theory. It should be pointed out that the above-mentioned works were limited to the condition of infinite 
Froude number (zero gravity).  A few years later, Doctors (1986) linearized the free-surface condition 
for finite Froude numbers. He studied the flow past a two-dimensional supercavitating, arbitrarily-shaped 
hydrofoil by distributing Kelvin-type sources and vortices along the mean line of foil and cavity. His 
results show that the effect of the Froude number is more important when the cavity length is greater. 

The advance of modern computers brings in rapid development of computational methods. The 
boundary element method (BEM) became an important tool in the study of the inviscid cavitating flow 
near the free surface which has been widely investigated theoretically. Through the computational 
approach, the shape of the cavity and body can be easily taken into consideration. Therefore, the 
cavitating flow can be more accurately predicted by using proper cavitation models. In addition, three 
dimensional effects can also be readily explored. Lee et al. (1992) first pioneered such an approach to 
solve two-dimensional flows past partially and supercavitating hydrofoils under a free surface. Later, 
Young and Kinnas (2001) developed a nonlinear BEM for surface-piercing propeller. The study which 
could trace cavity shape and free surface was carried out by Bal et al. (2001). 

Recently, the rapid development of computational fluid dynamics has made it possible to take into 
account the effects of viscosity and turbulence. Such progress makes the simulation more realistic. 
Furthermore, more complicated and practical cavitation models can be incorporated in the approach. 
Kubota et al. (1992) first introduced a two-phase flow cavity model which could explain the interaction 
between viscous effects. More recently, Senocak and Shyy (2001) conducted a systematic overview of 
numerical simulations of viscous cavitating flows based on the solution of Navier-Stokes equations. 
Singhal et al. (2002) proposed a “full cavitation model,” which took several factors related to the phase 
change into consideration. They include the formation and transport of vapor bubbles, the turbulent 
fluctuations of pressure and velocity, and the magnitude of noncondensible gases. In addition to the 
Reynolds-averaged Navier-Stokes equations (RANS), they also solved the Rayleigh-Plesset equations to 
simulate the detail of bubble dynamics. It is evident that the simulation of cavitating flow becomes more 
and more complicated. 

However, it is quite unfortunate that all these studies have not yet included effects due to the free 
surface. In fact, the studies available in the literature seldom investigate viscous cavitation near a free 
surface. It is the purpose of the present study to develop a numerical procedure to compute such a flow 
with complicated physical phenomena. Our approach employs the full cavitation model to simulate the 
cavitating flow and a volume of fluid (VOF) method (Hirt and Nichols, 1981) to capture the free surface. 
Although both of them are based on the concept of volume of fraction, they have to be treated separately. 
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This is due to the fact that the former must satisfy the Rayleigh-Plesset equations but the latter need not. 
An iteration procedure was developed to update iteratively the free surface and the cavity surface. We 
focus on the 2-D partial cavitating hydrofoil at a finite depth from the free surface. The flow field was 
governed by RANS (Reynolds-averaged Navier-Stokes equations) and solved by finite-volume method 
with SIMPLE algorithm. The turbulence model is k-ε turbulence model. 

THEORETICAL FORMULATION AND NUMERICAL PROCEDURE 
Shown in Fig. 1, a uniform viscous flow with free surface passes around a two-dimensional hydrofoil 

with a chord length c. The far-upstream incoming velocity is U∞ in the x-direction. The angle of attack is 
α. The depth from the calm water free surface to the leading edge of the hydrofoil is h. Partial cavitation 
takes place on the upper surface of the hydrofoil and waves are generated on the free surface when the 
fluid passes around it. 

The equations governing the cavitation phenomena can be expressed by 
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The symbols are defined as follows. First of all, mρ  is the density of liquid-gas mixture fluid defined 
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where kα  and kρ  denote the volume fraction and the fluid density of phase k, respectively. For 
convenience, we let k = 1 for the liquid phase and k = 2 for the gas phase (vapor). The symbol um  
represents the velocity of mixture fluid, 
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Fig. 1. The cavitating flow near the free surface. 
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m&  is the phase-changing mass rate; g is the gravity; p is the pressure field; mμ  is the dynamic 
viscosity of the mixture fluid, 
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In addition, dr,u k  represents the drift velocity, 
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It should be noted that, if the effects due to non-condensable gases are taken into account, Eq. (3) 

should be modified to 
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where nρ  represents the density of non-condensable gases for which the volume fraction is 

1 2(1 )α α− − .  

For the turbulence model, we employed the k-ε  model. In a cavitating flow field, the equations for k 
and ε  can be expressed as 
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The constants shown in the above two equations are similarly defined as those for the single-phase flow. 
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For the cavitation model, the “full cavitation model” proposed by Sinhal et al. (2002) was employed 
in our study. To simplify the study, we assume that (1) the fluid in liquid phase is incompressible and the 
fluid in gas phase is compressible and (2) the temperature effects are negligible. Under these assumptions, 
the mass fraction of gas phase, f, satisfies 

 ( )2( ) ( )um m e cf f f R R
t
ρ ρ γ∂

+∇ ⋅ = ∇ ∇ + −
∂

, (10) 

 
where γ  represents the effective phase exchange coefficient. eR  and cR  are the source terms 
denoting evaporation and condensation rates, respectively. These two source terms can be derived from 
the Rayleigh-Plesset equations and are given by 
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where Ce and Cc are empirical constants which are 0.02 and 0.01, respectively; chV  is the characteristic 
velocity; σ is the surface tension of liquid; pv the phase-change threshold pressure. Suggested by Sinhal et 
al. (2002), turbulence effects can have significant influence on cavitation. Therefore, the threshold 
pressure pv includes the turbulent pressure fluctuations and is estimated by 

 1 ( )
2v sat turbp p p= + , (13) 

 
where psat is the liquid saturation vapor pressure and turbp  is given by 

 0.39turb mp kρ= , (14) 

 
To treat the two-phase flow due to the presence of the free surface, we employed the volume-of-fluid 

method which is applicable when the gas and liquid cannot be exchanged. Let kβ  denote the volume 
fraction of phase k, then the mass conservation law requires 
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Again, we let k = 1 for the liquid phase and k = 2 for the gas phase (air). The volume fraction should 
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satisfy the additional condition 
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In the present study, we have three non-dimensional parameters 
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In our study, the finite volume method was employed to discretize the governing equations. The 

discretization procedure is a standard one. The solution method is based on the SIMPLE algorithm 
developed by Patankar and Spalding (1972). The algorithm corrects the velocity and pressure fields 
iteratively. In addition, the first-order upwind scheme was employed for the interpolations of vapor, 
turbulence kinetic energy (k) and dissipation rate (ε), the second-order upwind scheme for momentum, 
and the body-force weighted scheme for pressure. 

In the flow computations, there two kinds of gas phase: the air above the free surface and the vapor 
due to evaporation of water in cavitation. Even though they are of one kind in terms of their phase, they 
have to be treated separately due to different physical considerations. The air above the free surface is 
incompressible and non-exchangeable with the liquid phase; the vapor, on the contrary, is compressible 
and can be exchanged to or from the liquid phase in the condensation or evaporation process. To cope 
with these differences in computations, we devise an iterative procedure to compute the cavitating flow 
and to capture the free surface. The iterative steps are described as follows. 

(a) Assuming the hydrofoil is fully wetted, we first compute the flow field without cavitation and capture 
the free surface by using the VOF method. We assume the free surface coincides with the contour line 
where the volume fraction β1 takes the value of 0.5. 

(b) The mesh is regenerated according to the free surface obtained in step (a). The new mesh excludes the 
area occupied by the air above the free surface. 

(c) Fixing the shape of the free surface, we then compute the cavitating flow around the hydrofoil by 
using the full cavitation model. Here, the velocity distribution on the free surface and the static 
pressure distribution on the outlet boundary are specified as parts of boundary conditions. Again, we 
assume the cavity surface coincides with the contour line where the volume fraction α1 takes the 
value of 0.5. 

(d) The mesh is regenerated according to the surface of the cavity obtained in step (c). The new mesh 
includes the area occupied by the air and excludes the areas occupied by the cavity and the hydrofoil. 

(e) Fixing the cavity shape, we again compute the flow field and update the free surface by using the 
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VOF method. Here, the “mean” tangential velocity distribution on the cavity surface is specified as 
the boundary conditions on it. 

(f) Repeat the steps (b) to (e) till a proper convergence of the cavity shape and free surface is achieved. 

There are several criteria we specified in steps (a), (c) and (e) to ensure a proper convergence. First 
of all, the residuals of continuity equation, the velocity components and the volume fraction must be less 
than some tolerance ε1. In addition, inn steps (a) and (e), the mean variation of the free surface shape must 
be less than the required tolerance ε2 during iterations. And, in step (c), the change of the lift coefficient 
and the mean variation of the cavity shape have to be less than another required tolerances ε3 and ε4 
during iterations, respectively. 

TEST CASES 
We first briefly describe the computational domain and the mesh used for computations. First of all, 

the infinite domain must be properly truncated before the mesh can be generated and computations follow. 
In our study, the upstream and downstream boundaries are set at 5c from the leading edge and 10c from 
the trailing edge, respectively. The mesh was then generated by the commercial code GRIDGEN. We 
divided the computational domain into two areas. For the area around the hydrofoil, which is smaller, we 
employed an unstructured fine grid in order to capture the cavity shape accurately. For the other part 
somewhat far away from the hydrofoil, an H-type of grid was generated. The mesh in this part is 
relatively coarse, compared to the unstructured one. Nevertheless, the H-grid is nearly orthogonal so that 
we can capture the free surface with a higher accuracy. In the present iterative strategy, re-gridding is 
required in every iteration to capture the free and cavity surfaces. 

For the following computations, we need to set several parameters. The water temperature was 
specified to be 25°C. At this condition, the saturation pressure of water, psat, is 3,540pa, the water density 
998.2kg/m3, and its vapor density 0.5542kg/m3. In addition, water and vapor viscosity are 31.003 10−×  
kg/m-s and 51.34 10−× kg/m-s, respectively. The air viscosity is 51.7894 10−× kg/m-s and air density 
1.225kg/m3. Furthermore, the gravity acceleration is 9.81m/s2, and the mass fraction of the 
non-condensable gas in the water is 51.5 10−× . 

To proceed to computation of the cavitating flow near the free surface, we first conducted two tests. 
The first one is the flow past a fully wetted hydrofoil near the free surface. This is to verify the capability 
of capturing the free surface. A NACA 0012 hydrofoil was employed for the test. The angle of attack of 
the incoming flow is 5 degrees. The other parameters are set at h/c = 0.951, Re = 51.624 10× , and Fn = 
0.5672. Fig. 2 shows the wave form of the present result at β1 = 0.5 and its comparison to the 
experimental data by Duncan (1983) and the simulation results of Yang and Stern (2007). It is evident that 
the wave trend and frequency are close to each other but the amplitude of the present study is somewhat 
smaller and decays somewhat faster. This may be due to the dissipative nature of VOF method and the 
effects of the somewhat coarse grid distribution near the free surface and away from the flow field. A 
better result can be obtained if a finer grid is employed. Nevertheless, this test confirms that we can 
capture the free surface. In addition, according to the result, we specify the contour line at β1 = 0.5 to be 
the water surface which separates the water from the air in computing the cavitating flow. 

The second test is the cavitating flow over a hydrofoil without the free surface. This is to verify the 
capability of capturing the cavitation and cavity. A NACA 0015 hydrofoil was employed for test. The 
angle of attack of the free stream is 8 degrees. Other parameters are set at Re = 74.4 10× , and σ = 0.1. Fig. 
3 shows the distribution of the vapor fraction. We compare the result with that obtained by the potential 
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flow model. It appears that the contour line of α1 = 0.5 is well-consistent with the cavity shape obtained 
by potential code. Therefore, in the following computations, we specify the contour line at α1 = 0.5 to be 
the cavity surface which separates the vapor from the water in computing the cavity surface. 

We proceed to the computations of the cavitating flow near the free surface. In the present study, the 
section of the hydrofoil is NACA 16-006. The angle of attack is 4 degrees. The non-dimensional depth of 
the hydrofoil at the leading edge h/c = 0.5. Two different cavitation numbers were employed. 

We proceed to the computations of the cavitating flow near the free surface. In the present study, the 
section of the hydrofoil is NACA 16-006. The angle of attack is 4 degrees. The non-dimensional depth of 
the hydrofoil at the leading edge h/c = 0.5. Two different cavitation numbers were employed. 

 

Fig. 2. The wave due to the uniform flow past a non-cavitating hydrofoil. 

 

Fig. 3. The vapor distribution for flow past a cavitating hydrofoil (without free surface). 
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For the first case, the cavitation number 1.0σ = . Correspondingly, the incoming speed U∞ = 14.3 
m/sec, the Reynolds number Re = 71.433 10×  and the Froude number Fn = 4.89. Fig. 4 shows the 
convergence history of the free surface. In five iterations of VOF computation, the free surface is well 
convergent. In fact, after the third iteration, the variation of the free surface is within the range of 
negligence. The convergence history of the cavity shape is shown in Fig. 5. It is obvious that the same 
convergence conclusion can be drawn. That is, after the third iteration, the variation is not significant 
except in the region of bubble closure. The convergent results show that the hydrofoil is partially 
cavitating at the leading edge and the cavity length is about 0.07c. The cavity is small. The maximum 
wave height is 0.114m appearing at the location almost directly above the leading edge of the hydrofoil. 
Its magnitude implies that the free surface effect is not negligible. 

 

Fig. 4. The convergence history of the free surface at σ = 1.0. 

 

Fig. 5. The convergence history of the cavity surface at σ = 1.0. 
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Fig. 6 shows the vapor fraction distribution in the region near the cavitating area. Fig. 7 shows the 
velocity field near the region where the cavitation occurs. Observing these two plots, it is interesting to 
find that right after the pure vapor region where only vapor occupies (αv = 1.0), a low-speed recirculating 
region follows. This region grows downstream. The flow re-attaches the hydrofoil surface at a point 
where the vapor fraction is very small (αv ≈ 0.02). It appears that the flow in the cavity closure region is 
quite chaotic. This phenomenon was also observed in the results without the free surface by Senocak and 
Shyy (2001). 

The pressure field and its coefficient distribution on the hydrofoil surface is shown in Fig. 8. On the 
surface where the cavitation occurs, the pressure coefficient keeps a constant value which corresponds to 
the value of psat (3540 pa). Basically, the high-speed region has a lower pressure distribution and vice 
versa. Furthermore, the static pressure increases gradually in the vertical direction due to the hydrostatic 
pressure induced by gravity. 

Fig. 6. The vapor fraction distribution around the hydrofoil at σ = 1.0. 

   

Fig. 7. The velocity field near the region where the cavitation occur at σ = 1.0. 

In the second test, the cavitation number 0.5σ = . The corresponding incoming velocity is 20.3m/sec 
and the Froude number is 6.47. The convergence history is similar to that in the first case. Within five 
iterations, the iterative computation achieved its convergence within the specified tolerance criteria. The 
maximum wave height is about 0.135m, only 0.02m higher than that in the first case. Nevertheless, the 
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cavitation bubble is much longer. The vapor fraction and velocity distributions are shown in Fig. 9 and 10. 
The contour with αv = 0.5 represents the cavity surface. The cavity is about 0.45c in length. Again, there 
exists a low-speed recirculating region right after the pure vapor region. Similarly, the region re-attaches 
the hydrofoil surface at a small vapor fraction of about 0.02. The pressure distribution in the flow field 
and the pressure coefficient on the hydrofoil surface are shown in Fig. 11. Finally, we also computed flow 
at the same condition but without a free surface. The cavity surface is shown in Fig. 12. Obviously, the 
cavity is longer than that under a free surface. This is due to that the wave peak appears just above the 
leading edge area and results in a higher static pressure. 

   

Fig. 8. The distribution of static pressure and cp on the hydrofoil surface at σ = 1.0. 

   

Fig. 9. The vapor fraction distribution around the hydrofoil at σ = 0.5. 

CONCLUSIONS 
In the present work, an iterative numerical procedure to combine fully cavitation model and the VOF 

method has been developed for a cavitating hydrofoil near a free surface. A convergent solution can be 
properly achieved within several iterations. Therefore, through the present iterative procedure, we can 
capture the cavitating flow near the free surface. The test cases show that convergence in the computation 
of the free surface is quite good in the use of the VOF method. Nevertheless, the convergence in the 
computation of the cavity shape is somewhat slower. This is especially true in the region of the bubble tail 
or cavity closure. 
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Fig. 10. The velocity field near the region where the cavitation occur at σ = 0.5. 

   

Fig. 11. The distribution of static pressure and cp on the hydrofoil surface at σ = 0.5. 

   

Fig. 12. The vapor fraction distribution without a free surface at σ = 0.5. 
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