
 
 

                                                     

INFLUENCE OF ENERGY RELEASE IN NONEQUILIBRIUM MEDIUM 
UPON THE STRUCTURE OF SWIRLING FLOWS

Nikolay Vinnichenko1, Alexey Osipov2, and Alexander Uvarov2

ABSTRACT 
This paper is devoted to modification of parameters of a single columnar vortex or a swirling flow in a pipe due 

to energy release from the internal degrees of freedom in nonequilibrium medium. The problem is addressed using 
direct numerical simulations by first- and second-order Godunov methods. For axisymmetric evolution of a free 
columnar vortex analytical solutions are also found for limiting cases of quick and slow relaxation. It is shown that 
in the result of initial excitation of internal degrees of freedom a columnar vortex is transformed into a new 
stationary state, it does not disappear or break down. The process of vortex evolution includes relaxation of the 
initial excitation, propagation of the wave, which takes away extra mass, and (in non-axisymmetric case) formation 
of a spiral and falling of the hot gas region towards the vortex centre. Also the development of Rayleigh-Taylor 
instability is possible. In the case of a swirling flow in a pipe heating results in slowing down of the axial flow and 
dramatic vorticity decrease in the vortex core, whilst vorticity increases at the vortex periphery. This result can be 
interpreted as a vortex beakdown in a pipe. 

Keywords: Swirling flows, energy release, direct numerical simulation, compressible fluid, plasma 
aerodynamics 

INTRODUCTION 
The swirling flows are ubiquitous in nature and technical applications. Frequently they interact with 

energy releases of various kinds: chemical energy release in combustion, or energy release from internal 
degrees of freedom in gas discharge, or Joule heat in electrohydrodynamics, or the heat, associated with a 
phase transition, or simply energy release from some heating device. Swirl is often used to stabilize 
combustion in burner devices and inside the combustion chambers of jet engines (see the book by Gupta 
et al. (1984)). Using nonequilibrium state of the medium created with the discharge is often proposed as a 
flow control tool in aviation. It is desirable to control the flow inside the engines, the tip vortices at the 
wings and the length of the vortical wake behind the aircraft using non-mechanical techniques, first of all, 
thermal and electrical ones. There is even an impressive example of vortex—energy release interaction in 
nature: formation of a tropical storm, which is presumably driven by the influence of the heat from 
condensation upon the structure of a cyclone. 
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Despite the practical importance, little is known about the influence of nonequilibrium energy release 
(and even simple heating) upon the parameters of vortices and swirling flows. Since vortices are 
essentially subsonic flows (the axial velocity may exceed the speed of sound, but the azimuthal 
component is always subsonic), most studies use incompressible fluid approximation. It can yield the 
influence of the flow structure upon the temperature distribution in the flow, but not vice versa. As 
heating results in mass transfer which is neglected in incompressible fluid approximation, it is necessary 
to use the complete system of equations for compressible fluid for a correct description of heating effects 
on parameters of the flow.  

Vortex breakdown is often mentioned in the context of vortical flow parameters modification due to 
heating. However, it should be stated that vortex breakdown takes place only in swirling flows (vortices 
with axial velocity), where a zone of slow axial flow can be created by the energy release. Dramatic 
change of azimuthal velocity is associated with these changes of axial flow structure, and thus is 
impossible in columnar vortices without axial velocity. In the latter case only changes of azimuthal 
velocity due to mass redistribution (taking into account total angular momentum conservation) are 
possible. 

First, the most simple flow configuration — a columnar vortex — will be considered. Since there is 
no axial velocity for this configuration, which can provide heat removal, constant or periodic heating (or 
energy pumping into internal degrees of freedom) would result in gradual heating of the whole fluid 
volume, which is physically irrelevant. Therefore, we will consider the evolution of initial excitation of 
the internal degrees of freedom in some spot, the center of which can either coincide with the vortex 
center (axisymmetric case) or not (nonaxisymmetric case). Also, the case of finite length of excitation 
region along the vortex axis and possible development of Rayleigh-Taylor instability for periodic energy 
pumping in annular region will be considered. Then we will address the problem of the influence of local 
heating upon the structure of swirling flow in a pipe. The presence of axial velocity and a wall results in 
quite different behavior of the flow. This investigation is still under way, but some of the first results will 
be given here.         

EVOLUTION OF A COLUMNAR VORTEX DUE TO INITIAL EXCITATION OF INTERNAL 
DEGREES OF FREEDOM 

Problem Formulation 

Evolution of the vortex is governed by hydrodynamics system of equations (1) complemented by 
one equation of relaxation of internal degrees of freedom. We do not consider detailed kinetics model 
because it is usually specific for some particular conditions and suffers from the lack of reliable data 
about reaction rates (relaxation times). Our goal is to understand the basics of vortex evolution from the 
initial nonequilibrium state, so we pay more attention to gas dynamics and model kinetics with just one 
effective relaxation process. One of the advantages of this approach is that the results become generally 
applicable to problems, involving vortices interacting with other types of energy release (combustion 
problems, tropical storm formation, etc.). Since the parameters of vortex are changed by the sound waves 
(or shock waves) due to energy release, the process of vortex evolution is quick and the influence of 
viscous dissipation is negligible for typical vortex parameters. Moreover, analytical solutions, which will 
be presented below, are obtained for inviscid fluid. Numerical simulations for viscous fluid showed that 
viscous dissipation and influence of energy release are independent: very small vortices die out because 
of viscous dissipation before the influence of energy release becomes remarkable, so in this case there is 
no vortex left which can be modified by the energy release. For these reasons the results will be presented 
for inviscid fluid only. Equations for axisymmetric case and infinitely long excitation region (in polar 
coordinates) are given here for brevity, in the case of finite excitation region length there is also 
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momentum equation for -axis (parallel to vortex axis), in nonaxisymmetric case and in simulations of 
Rayleigh-Taylor instability the problem is treated in cartesian coordinates. 
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Variables , , rv ϕv ρ , ,p  T  and ε  are the radial and azimuthal components of velocity, density, 

pressure, temperature and energy of internal degrees of freedom, R  is gas constant,  and pc μ  are 

specific heat and molar mass of the gas, )(Teqε  is the equilibrium value of energy of internal degrees of 
freedom, τ  is relaxation time which can depend on temperature, for example, according to 
Landau-Teller formula. Initially, we have a columnar vortex with excited internal degrees of freedom in a 
circular spot: 
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Here  is the typical value of excitation,  is the radius of excitation region, energy intTΔ D ε  and 
temperature  of internal degrees of freedom are connected by relation  intT

                        ( )( ) ,
1/exp int −

=
Tkm Bϖ

ϖε
h

h
                                        (3) 
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where ϖh  is energy quantum,  is mass of a molecule. m

The following boundary conditions were used: 

• at the axis 0///vv =∂∂=∂∂=∂∂== rrrTr ερϕ , 

• at the outer boundary  .0////vv 22222222 =∂∂=∂∂=∂∂=∂∂= rrrTrr ερϕ

The evolution of single columnar vortices in nonequilibrium medium was investigated by 
Soukhomlinov et al. (2005) and by Zavershinskii et al. (2009). Both studies used conception of stationary 
(for motionless fluid) nonequilibrium medium, where energy release (density-dependent or 
temperature-dependent) from the internal degrees of freedom is compensated by constant heat loss. 
Unfortunately, some simplifications were made in both cases concerning compressibility of the fluid. The 
obtained results — fast disappearance of the vortex and its transformation into diverging or converging 
flow with axial velocity — seem to be caused by these oversimplifications. Detailed discussion of these 
results and a correct description of vortex evolution in a stationary nonequilibrium medium can be found 
in our recent paper (Vinnichenko et al., 2009). The present model of an initial locally nonequilibrium 
state of the medium is more realistic one, the level of excitation is not constant any more, but allowed to 
change according to relaxation equation. 

Results for Axisymmetric Case 

 The problem was solved using first order Godunov method (see the book by Kulikovskii et al., 2000) 
with exact Riemann solver. Nonuniform 500-points grid was used in most calculations, the grid step 
varied from 0.02 near the axis to 0.14 near the outer boundary 40=r  (hereafter the distances are given 
in typical radii of the vortex). The initial azimuthal velocity profile corresponds to Gauss vortex: 
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First of all, relaxation of the initial excitation takes place. It may be quick or slow, depending on the 
value of relaxation time. If relaxation time is small (quasi-thermal case), relaxation takes place so quickly 
that only temperature and pressure change, the other variables are not modified. Then, according to 
imbalance between the pressure gradient and centrifugal force, a wave is formed which propagates away 
from the vortex axis, taking away extra mass. Since the total angular momentum is conserved, mass 
transfer from the vortex axis results in modification of azimuthal velocity profile. After the wave leaves, 
the vortex remains in a new stationary state with modified parameters. Possibility to divide in time 
relaxation and propagation of the wave for the case of small relaxation time allows to construct analytical 
solution describing the process of vortex evolution. It is constructed in the form of Fourier-Bessel 
expansion analogous to the case of stationary nonequilibrium medium (see Vinnichenko et al., 2009). The 
expression is too lengthy, so it is not given here. It follows from the analytical solution that the final 
change of azimuthal velocity is proportional to initial vorticity distribution and the proportion factor is 
negative. Therefore, Gauss vortex, which has a core of positive vorticity, surrounded by an annulus of 
negative vorticity, slows down in the core and is accelerated in the peripheral region. Comparison of 
analytical and numerical solutions for an intermediate time moment, when the wave is already formed 
and propagates away, is shown in Fig. 1. Mach number is 0.28, temperature of undisturbed medium  
is 300 K,  is 400 K, , relaxation time is 10

0T

intTΔ 3=D -5 s. Values of  and  are normalized using 

, values of density — using 
rv ϕ'v

0v ∞ρ , values of pressure — using , temperature is given in kelvins, 
time — in seconds, 

2
0v∞ρ

r  — in radii of initial vortex. Solid line corresponds to analytical solution, circles — 
to numerical one. (To obtain a quantitative criterion of “quick or slow” relaxation, one can find the ratio 
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of typical time scales: relaxation time τ  and the time of wave propagation , where  is the 
vortex radius and  is the speed of sound.) 

svor cR / vorR

sc

 

          
 

Fig. 1. Radial profiles of a) change of azimuthal velocity, b) radial velocity, c) density,    
d) pressure, e) temperature, f) temperature of internal degree of freedom. 

 If relaxation is slow, the forming wave is much more weak, because the energy has enough time to 
be redistributed. Relaxation takes place simultaneously with propagation of the wave, so it is impossible 
to divide two processes in time. Nevertheless, it is possible to construct another analytical solution, taking 
into account that the wave is weak and the pressure remains almost the same during the whole process. It 
appears that the final state does not depend on the value of relaxation time: weak waves in the case of 
slow relaxation eventually take away the same mass and result in the same change of azimuthal velocity 
as the intense wave formed in the case of quick relaxation. This result becomes even more impressive if 
we simulate a real energy distribution in gas discharge: part of the energy (~25%) is quickly thermalized, 
the remaining part goes to internal degrees of freedom and relaxates relatively slowly. Despite the small 
amplitude of the waves driven by slow relaxation of 75% of energy (it is so small that these waves are not 
observed in the experiments and often are simply neglected), these waves cause larger change of 
azimuthal velocity than the initial wave due to direct thermalization of 25% of energy. 

Finite Length of Excitation Region 

 One of the simplifications that we have used above is supposition that the initial excitation depends 
only on r , i.e. it is uniform along the vortex axis. Though it is usual for gas discharge chambers that the 
discharge is bounded in axial direction only by the walls of the chamber, local excitation is much more 
interesting for aviation applications. In this subsection we will see what additional effects appear if we 
consider the same problem taking into account -axis and using the initial excitation of the form z
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instead of (2). The problem was solved using second order Godunov method (Kulikovskii et al., 2000) 
with van Leer TVD-limiter. The first order method appeared to possess too large numerical viscosity for 
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solving problems on a 2D-grid. 200x100-points grid was used for calculations, a supplementary layer of 
15 points in each direction with rapidly increasing step provided the absence of reflection at the outer 
boundaries. 

 Temporal evolution of distributions of azimuthal velocity, pressure and density in meridional plane 
r -  is shown in Fig. 2. m/s, z 20v0 = 1.0=vorR m, 2700int =ΔT K, 1== zDD , s. 
Values of velocity are given in m/s, values of pressure — in Pa, values of density — in kg/m

5103 −⋅=τ
3, time is 

given in seconds. 

                    

Fig. 2. Snapshots of distributions of a) azimuthal velocity (m/s), b) pressure (Pa),        
c) density (kg/m3) for different time moments. t=0.0045 s corresponds to the moment, 
when the primary wave leaves the domain, t=0.09 s — to the final state. 

 One can see that due to finite length of excitation region when the primary wave leaves the domain 
(second column in Fig. 2) there is a non-zero pressure gradient along the vortex axis. Up to this stage the 
solution corresponds to 1D-problem solution for each  (so, the azimuthal velocity is decreased in 
excitation region), but non-zero axial pressure gradient results in a secondary flow: gas moves upwards 
and downwards from the excitation region along the vortex axis and, to keep the radial pressure gradient, 
from the periphery towards the axis. The mass transfer is reflected by evolution of the shape of 
low-density region — initially circular, it elongates along the vortex axis. The radial movement of gas 
towards the vortex axis results in increase of azimuthal velocity. Since the pressure in the final state does 
not depend on  and the stationary state satisfies , the value of  does not 
depend on  and thus is equal to the value for undisturbed vortex. Hence, if density decreases, azimuthal 
velocity is eventually increased. So, one can state that for a finite excitation region the effect has the 
opposite sign due to secondary flow.    

z

z rrp /v/ 2
ϕρ=∂∂ 2vϕρ

z

Nonaxisymmetric Case: Spiral Formation and Falling to the Center 

 If the center of excitation spot does not coincide with the center of the vortex, the first stage — 
relaxation of the excitation and propagation of the wave — take place just as in axisymmetric case. The 
difference is that the hot gas region, which finally remains at the place of initial excitation, is not in the 
center of the vortex in this case. Two new effects arise: first, the hot gas region is transformed into spiral, 
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and secondly, it falls towards the vortex center. The reason of spiral formation is purely kinematic: in the 
vortex the angular speed of rotation is less for points situated further from the axis. Any spot contains 
points which are situated more close to the axis and rotate faster and the others which fall behind. Thus, 
any passive spot in the vortex velocity field is transformed into a piece of a spiral, bounded by minimal 
and maximal distances from the axis, which must remain the same if the spot is really passive. But for a 
considerable initial heating, the hot gas region is not passive: it has low density, which affects the velocity 
field. Since the radial pressure gradient does not change much and the centrifugal force is decreased 
because of decrease of density, the balance between the pressure gradient and the centrifugal force is 
violated and the hot light gas falls to the center of the vortex. The process is analogous to rising of a light 
bubble in the gravity field, even the shape of the bubble with two side tails looks the same. Depending on 
the value of initial excitation, falling to the center may be quick, then the spiral does not have enough 
time to be formed. Density evolution in two different cases is shown in Figs. 3 ( K) and 4  
( K). In the first case (Fig. 3) falling is slow and a pronounced spiral shape can be seen, 
whereas in the second case (Fig. 4) falling to the center is much more quick. 

2000int =ΔT
2700int =ΔT

       

 

Fig. 3. Density field (kg/m3) evolution for 2000int =ΔT K: spiral formation 

 

Fig. 4. Density field (kg/m3) evolution for 2700int =ΔT K: falling to the center 

Finally, the hot gas mixes in the central part of the vortex, and the final state of the vortex appears to be 
axisymmetric. Presumably, formation of the spiral, which has large perimeter, and final mixing must lead 
to increase of the role of dissipative processes. This hypothesis is supported by the results of numerical 
simulations, but unfortunately, the numerical viscosity is too large to show this quantitatively. 

Development of Rayleigh-Taylor Instability 

 Another effect, which should be considered for a heated vortex, is possible development of 
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Rayleigh-Taylor instability. It is well-known (see e.g. Sipp et al., 2005) that the vortices with heavy core 
(i.e. with negative radial density gradient) are unstable. The instability is analogous to classical 
Rayleigh-Taylor instability of two-layer configuration, when the heavier fluid is situated above the lighter 
one. In a vortex the role of gravity is played by centrifugal force and “above” means “closer to the axis”. 
The negative radial density gradient may be created if one heats an annular region of the fluid, concentric 
with the vortex. The forming waves take the mass away from the heated annulus and it becomes lighter 
than the central part of the vortex. Thus, the conditions necessary for instability development may be 
created. However, development of instability without any special eigenmode disturbance of a finite 
amplitude is a long process, it takes several dozens of periods of vortex rotation. The negative density 
gradient has to be maintained during this time. So, instead of initial excitation in this case we simulated a 
periodic energy pumping into internal degrees of freedom. It results in gradual heating of the whole 
vortex, but the maximal achieved temperature was only 620 K, much lower than typical temperatures in 
gas discharge. So, the energy necessary for development of Rayleigh-Taylor instability is rather moderate. 
Temporal evolution of density field is shown in Fig. 5. One can see that the mode with azimuthal wave 
number 2 appears to be dominant, though at early stages also mode with azimuthal wave number 3 can be 
observed. The vortex transforms into elliptical one with two spiral arms. If energy pumping is stopped, 
falling to the center and mixing take place, and the vortex becomes circular once again. 

  

 

Fig. 5. Development of Rayleigh-Taylor instability: temporal evolution of density field 
(kg/m3) 

INFLUENCE OF LOCAL HEATING UPON THE STRUCTURE OF SWIRLING FLOW IN PIPE 
It was shown above that one should spend a lot of energy (in other words, to provide considerable heating) 
in order to obtain remarkable changes of azimuthal velocity for a columnar vortex. Here we will see that 
the heating can be more effective for a swirling flow. There are two main differences from a columnar 
vortex:  

• presence of axial velocity, 
• presence of side wall. 

 

Presence of axial flow allows to use constant or periodic heating, still obtaining stationary or periodic 
flow regimes. Besides, complemented with the presence of the wall, it leads to possible vortex breakdown 
even without heating. The problem becomes much more complex (especially, stability issues), but new 
opportunities arise associated with vortex breakdown control using moderate energy release. Of course, it 
is tempting to benefit from relatively unstable flow regime, which can be controlled by moderate 
resources. The third difference from a free columnar vortex is that the swirling flow in a pipe can be 
realized and measured experimentally. So, this is also a possibility to check the results of simulations. The 

 8



influence of energy release upon parameters of a swirling flow was investigated by Kazakov (1998). It 
was shown that the energy release can lead to decrease of the axial velocity and a considerable decrease 
of azimuthal velocity. Since the flow was bounded not by a pipe wall, but by a cocurrent flow, no true 
vortex breakdown phenomena could be observed without energy release. Moreover, only the parabolic 
system of equations for stationary flows was considered, hence no recirculation zones (with negative axial 
velocity) could be obtained. So, these results should be considered as a benchmark for further 
investigations. 

 The flow is supposed to be axisymmetric, governed by Navier-Stokes equations for compressible 
fluid in cylindrical coordinates. Correct formulation of boundary conditions appears to be very important. 
First of all, there is a problem of boundary layer at the wall. For high Reynolds numbers, which are 
typical for the experiments, the boundary layer is very thin. A complete description of boundary layer 
requires grid refinement, which results in dramatic increase of calculation time. Since the internal 
structure of boundary layer is not important for the considered problem, it is preferable to use simplified 
description of the boundary layer. At the moment, we use following boundary conditions at the wall 
surface: 0//v/vv zr =∂∂=∂∂=∂∂= rTrr ϕ , . It is not an ideal choice, because it 
actually eliminates friction at the wall surface, allowing fluid to slip freely. The result is the absence of 
vortex breakdown without energy release. So, further improvement of the boundary condition is necessary. 
Next, the inlet boundary conditions are prescribed as follows: 

rrp /v/ 2
ϕρ=∂∂

,0/v),(vv),(vv 00 =∂∂== zrr rzz ϕϕ  

, . Here  and  are fixed distributions of velocity components at the 
inlet which can be obtained experimentally. At the outlet convective boundary conditions of the form 

 are used for density, pressure and velocity components. At the axis we use 

0TT = 0/ =∂∂ zp )(v 0 rz )(v 0 rϕ

0/v/ =∂∂+∂∂ zAtA z

0///vvv =∂∂=∂∂=∂∂== rTrrzr ρϕ . The use of boundary condition 0/ =∂∂ zp  instead of a 
fixed pressure profile at the inlet is due to the fact that heating may change the pressure even in points 
situated upstream of the heating region. In a real experiment this may depend on apparatus, which creates 
the swirling flow. However, it is quite complex and can hardly be modeled. Hence, we allow pressure to 
change freely, though an experimental verification of this boundary condition is necessary. 

 The problem is solved on a 100x100-points grid by second order Godunov method. The radius of 
the pipe is 17.6 mm, its length is equal to 5 radii, radial profiles of axial and azimuthal velocity 
components at the inlet are taken from experiment by Klimov and Moralev in High Temperature Institute 
of RAS, the maximal values are reached near the wall and are equal to 15 m/s for axial velocity and 19 
m/s for the azimuthal component. The center of the heating region is situated at the axis, 3 radii 
downstream from the inlet, the length of the heating region is 1 radius of pipe and its typical radius is 0.2. 
The heating power is 3·108 Wt/kg. With boundary conditions specified above, the stationary state without 
energy release is almost columnar. When the heating is on, the axial velocity is decreased in the heating 
region, which agrees well with results by Kazakov, azimuthal velocity is also decreased and the pressure 
is decreased in the whole computational domain (Fig. 6). The axial component of vorticity is redistributed: 
it is damped near the axis and is increased at the vortex periphery. The intensity of the vortex decreases, 
whereas its effective radius increases. Such phenomena are usually referred to as vortex breakdown 
though there is no strict definition for this term. It should be noted that the situation is surprisingly 
different from 1D-flow without swirl, which is accelerated by heating according to conservation law 

const=vρ . The pressure is also increased in 1D-flow. Obviously, this difference is associated with the 
effect of swirl and must vanish when azimuthal velocity is decreased. It should be noted also that 
deceleration of the axial flow by heating in a swirling flow leads to a positive feedback between the 
heating and decrease of axial velocity: more heating results in stronger deceleration, which causes extra 
heating because the time it takes for a fluid particle to pass the heating region increases and the fluid gets 
more heat from the same power source. For large heating power this positive feedback may cause 
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formation of recirculation zones and instability of the flow due to overheating. Anyway, it enhances the 
efficiency of changing flow parameters by energy release. 

 

Fig. 6. Stationary distributions of a) axial velocity (m/s), b) azimuthal velocity (m/s),       
c) radial velocity (m/s), d) axial vorticity (s-1), e) pressure (Pa), f) temperature (K) in 
meridional plane r -  without and with energy release. The flow is from bottom to top. z
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CONCLUSIONS 
The problem of vortex modification by a local energy release was considered for a columnar vortex 

without axial velocity and for a swirling flow in a pipe. It was shown that a columnar vortex is 
transformed into a new stationary state in the result of relaxation of nonequilibrium initial state, it does 
not disappear or break down. The central part of the vortex has high temperature and low density in the 
final state. There is certain modification of azimuthal velocity (increase in the case of finite length of 
excitation region along the vortex axis), but the efficiency of vortex modification by energy release 
appears to be low. It was shown that the result of vortex evolution does not depend on the value of 
relaxation time, though for slow relaxation the process takes much more time and only very weak waves 
can be observed. Different effects were analyzed for axisymmetric and nonaxisymmetric initial excitation: 
relaxation of the initial excitation, propagation of the wave, transformation of hot gas region into spiral 
and its falling towards the vortex center. Also, the possible development of Rayleigh-Taylor instability 
was demonstrated. It was shown that efficiency of vortex modification may be higher in the case of 
swirling flow in a pipe due to the presence of axial velocity and possibility of vortex breakdown. First 
results, though incomplete, clearly show that local heating can cause slowing down of axial flow (in 
contrast to the case of 1D-flow) and consequent modification of vorticity structure. This can provide 
opportunity to control the vortex breakdown using local moderate heating. Some problems concerning the 
correct formulation of boundary conditions for a compressible swirling flow in a pipe were also 
discussed.      
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