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ABSTRACT

The most representative moment low-Reynolds turbulence models are characterized by a limited accuracy of the
laminar-turbulent transition prediction (Abe-Kondoh-Nagano, Abe-Jang-Leschziner, Abid, Jones-Launder, etc.).
Given GIPS turbulence model (1. addition of Opv/0y diffusion by pressure fluctuations with constant C,, to k
turbulence energy transition equation; 2. algebraic model for turbulent Reynolds stress models with two constant ¢,
and c,; 3. hypothesis of “complete” generation of turbulence on Heisenberg) allowed to increase the accuracy of a)
prediction of the plate flow-past zone of the laminar-turbulent transition; b) calculation of c; friction in a plane
channel at low Reynolds numbers.
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INTRODUCTION

Laminar-turbulent transition prediction still remains a stumbling rock for the most part of moment
turbulence models in spite of apparent advances in the calculation of complex turbulent flows. But
calculations of the laminar-turbulent transition on various turbulence models just prove the fact of their
poorness - see works by (Savill,2002), (Unger,1999) etc.. The emergence of “accurate” solutions by the
direct numerical calculation of Navier-Stokes equations (DNS) allowed to concentrate the modification of
turbulence models on the precision of f, damping function behavior in the turbulent viscosity expression,
on the direct tailoring of turbulent diffusive factors in the equation of k turbulence energy transition
(Hwang-Lin work), on the modification of the behavior of source members of ¢ diffusion transition
equation (Jaw-Hwang work). However this method also failed to clarify the versatility of “new”
dependencies. In his work Bradberg (Bradberg, 2001) compares DNS solution for a flat channel with 11
most representative Low-Re turbulence models. However the correctness of Bradberg 1D-model looks
rather doubtful since our experience in such calculations shows that the more fancy empirical functions
cumber the model, the longer and more torturous is the way to define the flow when calculating the
channel with the initially uniform velocity profile at the entry (the example is known to all «calculators» -
k-g-v>? Durban model).

The success of the modification of well-known Lam-Bremhorst model just by the addition of the model
of diffusion by pressure fluctuations into the equation of the turbulence energy transition
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(Golovnev&Platov, 2008), which has significantly improves the laminar-turbulent transition prediction,
lack of a similar (to the transfer) testing of turbulence models for flows with low Reynolds number on the
channel size (Rem), appearance of DNS solutions for channels with low Reynolds number (Ret) (works
by our Japanese colleagues) made us think that any dependencies for fu damping function that contain
only functions of Reynolds turbulent numbers in various forms, that is Re=k*/(v+¢), Re,=k'*y/v, y+, etc.),
tuned especially for a certain Rem Reynolds number, are not versatile. Bradberg came to the same
conclusion, analyzing the low accuracy of calculations by Hwang-Lin model. We think that any
turbulence model which contains the distance to the nearest wall in any form is doomed to non-versatility.
We applied Heisenberg idea that in a certain range of Reynolds numbers the turbulence may be
generated ... by viscous Newton stresses (tj=p*0Ui/0x; or uv=p0U/y for a thin layer). Formally in many
monographs such a form of k turbulence generation representation by turbulent and molecular viscosity is
given as
A =P le=[(u+up)xoU/dy]/ e

But according to “the traditions of Prandtl's analysis of small values” the “molecular” generation is
neglected due to its smallness at high Re; (Reynolds) turbulence values. Because of poor knowledge of
German authors of given article “forgot” to omit this “small” member «on Prandtl» and with the use of a
well-known algebraic turbulence model for stresses on LRR Launder-Reece-Rodi model, but with the
generation of a “summary” model managed to get an adequate form of behavior of fu:(uv+-g+)/(Cu°k+2)
damping function.
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Fig. 1. fu damping function on DNS (Re, =109, Nagano) and turbulence models
(GIPS — model of the authors: JL — Jones-Launder, LB — Lam-Bremhorst, NT — Nagano-Tagawa, YS —
Yang-Shih, AKN — Abe-Kondoh-Nagano, Craft — Craft-Launder-Suga, Abid — Abid)
Given work compares the results of calculation of the flow in a flat channel at low Reynolds numbers
and the laminar-turbulent transition on plate according to GIPS turbulence model proposed by the authors
and moment turbulence models by other authors.



GIPS universal turbulence model

GIPS (GolovnevlgorPlatovSergey) model proposed by the authors differs from well-known ones by
the introduction of a model member for the diffusion by pressure fluctuations (in the equation of the
turbulence energy transition) and the form of the complete turbulence generation in the algebraic model
of Reynolds stress transition. A system of convective transition equations (continuity and fluctuation with
the turbulent viscosity concept) given (just for good layout) in 2D representation (flat task)
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is concluded by k-¢ 2-parameter model (Craft,1996):
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Turbulent viscosity is determined by an algebraic model for Reynolds stresses
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Complete LRR model (Launder-Reece-Rodi, 1975),
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and C;=1.5; C;=0.40; ., = (C, +8)/11 B, =(8xC, —2)/11y,,, =(30xC, —2)/55

The innovation of our model lies in the introduction of two new members:

A) to express the turbulence energy for the generation member in algebraic expressions we use
Heisenberg hypothesis (Heisenberg, 1924) of the generation both by viscous Newton and Reynolds
turbulent stresses

Ay =P le=[(u+p)xoU /oy e (©6)

B) turbulent diffusion by triple moments and pressure fluctuations (kv and vp) in the equation of k
turbulence energy transition are being modeled separately.
Triple correlation of velocity is given in a common gradient presentation

gz

but for a member with pressure fluctuations our GIPS model is used
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We used equation (7) earlier, though not with proposed here algebraic model — (4-5) ratios, but by simple
additive (without changing original constants and functions) inclusion of Lam-Bremhorst turbulence into
the model; and this inclusion, according to the work (Golovnev&Platov,2008), has significantly extended
and improved the possibility to predict the laminar-turbulent transition on the model considered as basic
one for SOLID WORKS complex of 3D visual simulation.

Here are some details of our ideas about the presentation of the diffusion by pressure fluctuations (7).
Experiments (Leontyev, 1972) and DNS digital modeling results allow to consider approximately that Rpy
correlation factor



R,, =pv/l\p' V) )

is constant across the shifted layer, that is, formally

PV=pv =R,y <V o

For non-sheared turbulence in U /0y =0 thin sheared layer (for example, on the channel axis) the

turbulence is close to the isotropic one, then pressure fluctuations (Kraichnan,1956): p ~ Ax u'’,

(where A proportionality factor depends on Re, turbulent Reynolds number (often is taken as A=0.5), then
the expression for pv becomes similar to Shishov model (Leontyev&Shishov&Roganov, 1979):

pv=C,ox(Vu J x v =€ xu?xv)

and just becomes “a part” of the common gradient representation of the turbulent diffusion while Cpys
factor is added to C,,, model expression factor of u’v triple correlation.

Few but correct measurements of pressure fluctuations in various turbulent shear currents (flows) of
Kawamura (1960), Kobashi (1957), Kono (1982), Kuroda-Matsuzawa-Ogawa-Inoue (1983) show that
Euw=p’/(pu’U) Euler fluctuation number is slightly changing across the shear layer (in channels, jets,
wakes and boundary layers) and may be caused by a cascade-type mechanism of turbulence energy
transition to the dissipation taking energy from the operation of strength (pressure) fluctuations of the
mean flow and further on from “large” eddies to “minor” ones. Rotta described this physically as the
dissipation of velocity fluctuations at moles of pressure fluctuations. Note that this linear dependence just
follows from known Laplace equation for pressure fluctuations in case u '<<U.

Simplifying and terminating the turbulence model at “k-g” level on Launder and supposing u” = A, * k
and v’ = A, * k proportionalities (where A, and A, are constant) we get an extremely simple expression
for pv:

(10)

pv=C,, xkxU a5)

where C,, is some “total” factor received, according to Launder method, by simple numerical
optimization. For GIPS model we have found Cpy=0.003 factor as an optimal one.
Calculations were performed in the parabolic 2D stationary installation on the program similar to
GENMIX (Spalding,1977) one. Number of the network nodes in across-track direction n = 80.
Boundary conditions
At a solid wall: U=V=0; k,,=0; £,=0
At external edge:
ou ok de
A) for a channel P 0; Fie O;E =0

6) for a boundary layer at a plate (U,=const) with Tu external turbulence similar to Unger work
(Unger,2002) on power laws of turbulence degeneration:

Tu? =Cx(x+x,)"

k=15Tu-U) =1.5-C*>-U2-((x+x,)/d)”"
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with degeneration power index n = 1.2 and factor C = 0.833



Calculation of turbulent channel flow at very low Reynolds numbers

DNS data from the work (Tsukahara&Seki&Kawamura, 2006) for calculations are given in Table No. 1

Table 1
Rell | Rem | Rec ull Cf p n h Uc Um Uin
64 | 1860 | 1200 | 0,10 | 0,00569 | 1,18 | 1,84E-05 | # | 0,01 | 1,866 | 1,446 | # | 1,45
70 | 2020 | 1270 | 0,11 | 0,00608 | 1,18 | 1,84E-05 | # | 0,01 | 1,975 | 1,570 | # | 1,57
80 | 2320 | 1430 | 0,12 | 0,00626 | 1,18 | 1,84E-05 | # | 0,01 | 2,224 | 1,804 | # | 1,78
110 | 3290 | 1960 | 0,17 | 0,00630 | 1,18 | 1,84E-05 | # | 0,01 | 3,048 | 2,558 | # | 2,46
150 | 4620 | 2720 | 0,23 | 0,00608 | 1,18 | 1,84E-05 | # | 0,01 | 4,229 | 3,592 | # | 3,39
180 | 5730 | 3360 | 0,28 | 0,00574 | 1,18 | 1,84E-05 | # | 0,01 | 5,224 | 4,455 | # | 4,17

Flat channel calculation was performed as developing up to stabilization with a thin input laminar
boundary layer and turbulence in the flow kernel on the channel axis equal to 3%. Such an approach,
differing from Bredberg testing (Bredberg, 2002), allows to track the dynamics of the flow in a long flat

channel (L>500h):
Table 2

Ret 64 64 70 70 80 80 110 110 150 150 180 | 180
turbulence model cf A% cf A, % cf A% cf A% cf A% cf A%
DNS [Tsukahara] 0,0057 0,0061 0,0063 0,0063 0,0061 0,0057
Abe-Jang-Leschziner 0,0076] 25,4| 0,0075| 19,3| 0,0073 14,7] 0,0069 8,7| 0,0065 6,4] 0,0062] 7,9
IAbe-Kondoh-Nagano 0,0069| 17,8| 0,0069| 11,7| 0,0068 7,8| 0,0065 2,8] 0,0061 0,9] 0,0059] 2,7
Abe-K-N(rev.) +dpv/dy 0,0059 3,6/ 0,0061 0,1] 0,0062 -1,5| 0,0064 1,6] 1,0000] 99,4] 0,0058] 0,7
Abid 0,0029| -98,2| 0,0046| -30,9] 0,0052] -20,4| 0,0055| -13,7] 0,0055| -10,6] 0,0054| -6,3
Chen-Patel, "1k" 0,0083| 31,8| 0,0081| 25,1 0,0078 19,3| 0,0070 9,9/ 0,0064 4,5] 0,0060] 4,7
Fan-Lakshmira-Barnett | 0,0029] -98,2] 0,0048| -27,1] 0,0052f -20,1]| 0,0055| -14,7{ 0,0054] -12,0] 0,0053] -7,9
Gatski-Speziale Il 0,0029| -94,2| 0,0026|-130,2| 0,0053] -18,6| 0,0050( -26,7| 0,0051| -19,7| 0,0051|-13,4
Golovnev-Platov GIPS | 0,0057 0,9] 0,0063 4,2| 0,0062 -0,5| 0,0062 -1,11 0,0060| -2,1| 0,0060| 4,3
Hwang-Lien 0,0097| 41,2] 0,0094| 35,0 0,0091 30,9/ 0,0084| 24,6] 0,0077| 20,6] 0,0073| 21,8
Hwang-Lien(rev.) +dpv/dy| 0,0067| 14,6 0,0064 4,3] 0,0076 18,1] 0,0069 9,2] 0,0070] 13,1] 0,0063] 8,3
lacovides-Launder, "1k" |0,0088] 35,4| 0,0086| 29,1] 0,0082 23,7] 0,0074| 14,8] 0,0067 9,6] 0,0064| 9,6
Jaw-Hwang 0,0080| 28,6| 0,0078] 22,5/ 0,0078 19,4] 0,0073] 13,7| 0,0067 9,4] 0,0063] 9,2
Jaw-Hwang(rev.) +dpv/ay| 0,0060 5,0/ 0,0068] 10,3] 0,0068 7,7 0,0065 2,5] 0,0059] -2,4| 0,0059] 1,9
Jones-Launder 0,0058 2,6/ 0,0059| -3,0] 0,0059 -5,4| 0,0059 -6,4] 0,0057| -6,0| 0,0056| -2,9
Lam-Bremhorst 0,0073| 21,7| 0,0072] 15,5 0,0071 11,2| 0,0067 6,0] 0,0060] -2,1] 0,0061| 6,2
Lam-Bremhorst +dpv/dy | 0,0062 7,8| 0,0068| 10,5/ 0,0067 6,0/ 0,0063 0,6] 0,0059] -3,1] 0,0058| 1,5
Launder-Sharma 0,0029| -98,2] 0,0026{-130,2] 0,0023] -172,2] 0,0017| -281,8] 0,0052] -17,4| 0,0052{-11,0
Nagano-Hishida-Asano | 0,0049| -16,1] 0,0050| -22,3| 0,0050| -24,9] 0,0049] -28,0{ 0,0048] -28,1| 0,0046| -24,5
Nagano-Tagawa 0,0053| -7,5| 0,0053| -14,9] 0,0053] -18,8| 0,0052| -22,1] 0,0050| -22,4] 0,0048]-18,8
Norris-Reynolds, "1k" 0,0060| -27,4] 0,0092[ 18,2] 0,0089 17,2] 0,0081 14,3] 0,0074] 11,7| 0,0070| 17,4
Rodi, "1k" 0,0090| 36,9] 0,0088| 30,9] 0,0084] 25,7| 0,0076 17,2| 0,0069 12,2] 0,0066| 12,4
Wilcox LRN, "k-w" 0,0089| 35,7| 0,0083| 26,6/ 0,0083] 24,3| 0,0076 16,7| 0,0070f 12,7] 0,0063] 8,3
Yang-Shih 0,0072| 20,8 0,0070] 12,7 0,0070 10,5| 0,0065 2,6] 0,0060] -1,5| 0,0058] 1,4
Yang-Shih + dpv/dy 0,0060 5,3| 0,0062 2,0] 0,0061 -3,0| 0,0063 -0,6] 0,0058| -4,7| 0,0053| -8,7

where +0pv/0y symbol means additive inclusion of the model of diffusion by pressure fluctuations in k
turbulence energy transition, and (rev.) symbol means the change of “original” values of coefficients

k-g expression on standard C,=1.44; C,,=1.92; 6,=1; 6.=1.3 ones.

in



For the lowest Reynolds number - Ret=64:
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Fig. 2. Calculation of c; friction in the channel (bottom axis — Re on the axial coordinate)

For average Reynolds number - Ret=110:

cf Rem=3290 (cf=0,0063) L=4,500m U=3,1nm/s Tu=3,00-3,00%
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Fig. 3. Calculation of c; friction (on Launder-Sharma model — degeneration into the laminar flow)
For small Reynolds number - Ret=70:
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Fig. 4. Calculation of c; friction (on Launder-Sharma model — degeneration into the laminar flow)



Calculation of the laminar-turbulent transition

Unger thesis (Unger, 1999) shows the poorness of Lam-Bremhorst model (Lam&Bremhorst, 1981) of the
laminar-turbulent transition. Simple additive inclusion of our model of the diffusion by pressure
fluctuations (Golovnev,Platov,2008) has significantly changed the ability of this model to predict c¢
friction of the laminar-turbulent transition, as may be seen from the Figure (for Tu=2% case):
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Fig. 5. Calculation of c; friction of the laminar-turbulent transition on the plate

Comparison here is made by known correlative dependencies of Abu-Ghannam, Mayle and calculations
of the representative turbulence model (Nagano&Tagawa, 1990) for which it occurred possible also to

improve the transition prediction:
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Fig. 6. Calculation of c; friction of the laminar-turbulent transition on the plate

This additive inclusion of the member of the diffusion by pressure fluctuations allowed even ... to

re-standardize “fancy” constants of certain models. For example, Abe-Jang-Leschziner constants of the
initial algebraic model of Reynolds stresses (Lardeau&Leschziner&Li, 2004) that is C.=1.45; C,=1.83;



or-1.2; o,~1.5 have regained “common” values that is C;=1.44; C,=1.92; 6,=1.0; c=1.3 at
Cpyv=-0.008; accuracy of the transition prediction has been significantly improved what can be seen in the
Figure:
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Fig. 7. Calculation of c; friction of the laminar-turbulent transition on the plate

And here, at last, are the results of the heat exchange calculation (Stanton number) on GIPS model (at
Pr=0.90) according to experimental data (Blair&Werle, 1980):

St Blair&Werle(1980),grid 2 L=0,500m U=30,3m/c Tu=2,52-1,79% To=15 Tw =25C
35 _'§) —— S$t=0.0296/Rex"0.2*P1"0.4
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Fig. 8. Calculation of c; friction of the laminar-turbulent transition on the plate

from where it is easy to see that the model (Yang&Shih, 1993) renders much earlier heat exchange
intensification than our GIPS model and modified by us Jaw-Hwang model (with re-standardized factors
and addition of the model of the diffusion by pressure fluctuations).

Conclusion
Thus, proposed by us GIPS model may be used as a point-to-point method of laminar-turbulent transition
calculations without any experimental data (and duly correlations) and ad hoc functions in any range of
Reynolds numbers (from viscous-laminar to developed turbulent).
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APPENDIX I. NOTATION
The following symbols were used ...

skin-friction coefficient, t,/(pU.*/2)

Cr

Cp coefficient of model “pressure-velocity”

h V2 height of channel

£, f, wall-damping function, f,=(uv+se+)/(Cpek ™
k turbulence energy, (W +v+w>)/2

c covariation p v

Re., Re,, Re, Reynolds number (Uc, Ut, h), Um, 2h

Tu turbulence intensity

u, v fluctuation of velocity

U,V average velocity

U, axis velocity

U average velocity in channel

u;u; stress tensor

X,y coordinates

€ dissipation rate of turbulence energy

W, Ly molecular and turbulent viscosity

Ty skin-friction

(rev.) Modification of k-¢ models into “standard” values of variables in & dissipation

equation (C;=1.44; C,=1.92; 6,=1; 5.=1.3) + Opv/0y
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