
 
 

AERODYNAMIC RESPONSE OF AN EMS-TYPE MAGLEV VEHICLE 
RUNNING ON FLEXIBLE GUIDEWAYS 
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ABSTRACT 
In this paper, an incremental iterative procedure was carried out to study aerodynamic response of an EMS-type 

maglev vehicle moving over a series of guideway girders at constant speeds. The maglev vehicle is simulated as a 
rigid car body supported by a rigid levitation frame using a uniformly distributed spring-dashpot system, in which 
the electromagnetic forces are controlled by an on-board optimal PI controller and the guideway unit is modeled as a 
series of simple beams with identical span. Considering the motion-dependent nature of electromagnetic forces and 
the velocity-dependent characteristics of aerodynamic forces, this study presents an iterative approach in 
conjunction with the simulation of aerodynamic coefficient curves approximated by a number of piecewise 
connected linear segments through subdivision to compute the interaction response of the maglev vehicle/guideway 
coupling system. Numerical simulations demonstrate that the aerodynamic forces lead to a significant amplification 
on the acceleration amplitude of the running maglev vehicle at higher speeds. Such an aerodynamic phenomenon 
should be taken into account in the analysis and design stage of a maglev transport system. 
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INTRODUCTION 
Successful operating experience of the Shanghai Maglev transport system since 2002 marked a new 

era in commercial maglev transport system. Compared with traditional trains with wheel/track contact 
mode, Maglev transport system can offer many advantages, such as low energy consumption, less 
environmental impact, as well as lower noise and emissions. Moreover, the powerful magnets under 
modern maglev technology are able to lift a vehicle up and propel it forward along a guideway via 
electromagnetic forces. According to the suspension modes, two kinds of maglev technologies have been 
developed: (1) electromagnetic suspension (EMS) with attractive mode; (2) electrodynamic suspension 
(EDS) with repulsive mode (Bittar and Sales, 1998; Yau, 2009). The EMS system can lift a vehicle up 
using attractive forces by the magnets beneath a guide-rail. The EDS system takes the vehicle above its 
guide-rail in the U-shaped guideway by using magnetic repulsive forces. To suspend a maglev vehicle at a 
stable levitation gap (air gap) between the on-board levitation magnets and the guideway, a controllable 
electromagnetic field is generated in its maglev suspension system. Generally, the EDS system can 
suspend a train above its guide-rail using concentrated magnetic repulsive forces only at high speeds with 
large guideway clearances of 10~15cm. As for the EMS system, it can lift a train up to 8~10mm using 
attractive forces by the distributed magnets beneath a guide-rail at any speed, which is the major 
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difference from the EDS system. 

From the past literatures in dynamics of maglev vehicle/guideway system, Cai and his co-workers 
(1995-97) investigated the response characteristics of different maglev vehicle models traveling over 
flexible guideways. They concluded that a concentrated-load vehicle model might result in larger 
responses of both guideway deflections and vehicle accelerations than a distributed-load vehicle model. 
In the literature review works conducted by Cai and Chen (1997), various aspects of the dynamic 
characteristics, magnetic suspension systems, vehicle stability, suspension control laws for maglev and 
guideway coupling systems were discussed. Zheng et al. (2000; 2005) presented two kinds of 
vehicle/guideway coupling models with controllable magnetic suspension systems to investigate the 
vibration behavior of a maglev vehicle running on a flexible guideway. They observed the phenomena of 
divergence, flutter, and collision on the dynamic stability of a maglev-vehicle traveling on a flexible 
guideway. 

In this study, a maglev vehicle is simulated as a rigid car body connecting a rigid magnetic bogie-set 
with a uniformly distributed spring-dashpot system and the aerodynamic forces acting on the moving 
vehicles are modeled as quasi-steady wind loading with mean speeds. Based on maglev theory, the 
maglev system is lifted up above the guideway with stable levitation gaps via motion-dependent 
electromagnetic forces. By employing Galerkin’s method to convert the governing equations of a moving 
maglev vehicle into a set of generalized differential equations, the computation of dynamic response for 
the vehicle system was carried out using an iterative approach with Newmark’s method (Newmark, 1959). 
To provide suitable control gains in tuning the magnetic force in the maglev suspension system for the 
dynamic response of the maglev vehicle moving at various speeds, an on-board PI controller based on 
Ziegler-Nicholas (Z-N) method (Astrom and Hagglund, 1988; Ogata, 1997) is used in the maglev system. 
Numerical simulations demonstrate that the aerodynamic forces play an important role in amplifying the 
acceleration amplitude of the running maglev vehicle as a result of increasing the moving speeds. 

 

Fig. 1. Schematic diagram of a running EMS vehicle. 

 

Fig. 2. Mathematical model of a moving maglev vehicle. 
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PROBLEM FORMULATION 
From the numerical results presented by Cai et al. (Cai et. al., 1995-97), they pointed out that a 

distributed-load vehicle model behaves better than a concentrated-load model in both responses of 
guideway and vehicles, which indicates that the vehicle supported with multiple magnets may have better 
ride quality. For this reason, the maglev vehicle supported with multiple magnetic wheels is employed to 
conduct the dynamic behavior of a moving maglev vehicle illustrated in this study. As shown in Fig. 1, an 
EMS-type maglev vehicle model is traveling over a rigid guideway system. Considering the dominant 
factor for vibration behaviors of the maglev vehicle system, only vertical motions of the dynamic model 
are concerned in this study (Cai et al., 1996; Yau, 2009).  

Since this paper is regarded as a preliminary research of theoretical development for a traveling 
maglev vehicle with the inclusion of aerodynamic forces, some basic assumptions are adopted as follows: 
(1) The maglev vehicle is simulated as a rigid double-beam system, in which the car body and the 
magnetic bogi-set are modeled as two rigid parallel beams connected by an interaction layer using a 
uniformly distributed spring-dashpot system (see Fig. 2); (2) Allowable levitation gap (h) at the magnetic 
wheel does not contact with the guide rail, i.e., h > 0; (3) The magnetic wheels are regarded as a series of 
equal-distant concentrated masses attached to the rigid bogie-set; (4) The effect of time delay between the 
input voltage and the output current on the maglev suspension system is negligible; (5) Only the mean 
aerodynamic forces of lift and pitching moment at quasi-steady state is considered as the magelv vehicle 
travels at high speeds, that is, the aerodynamic effect of turbulent flow is neglected in this study; (6) The 
wind forces acting on both the maglev vehicle and guideway girders are assumed to be negligible; (7) The 
aerodynamic forces acting on the guideway girder are regarded so small that their dynamic effects can be 
neglected. 

Governing equations of motion 
As shown in Fig. 2, a maglev vehicle supported by multiple magnet wheels with equal-intervals (d) is 

passing through a series of simple beams at constant speed v. Here, we shall use the following symbols to 
denote the properties depicted in the schematic diagram of Fig. 2: m = distributed mass of the beam, c = 
damping coefficient, EI = flexural rigidity, l = car length, mw = lumped mass of magnetic wheel, mb = 
distributed mass of the levitation frame, mv = distributed mass of the car body, and 

,
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=
 = 

midpoint displacement and rotation components of the rigid-double beam system. Here, the subscripts b 
and v are denoted as the rigid lower beam (levitation frame) and upper beam (car body) for the EMS-type 
maglev vehicle model, respectively. With the inclusion of ground settlement at guideway supports, one 
can formulate the equation of motion for the jth guideway girder carrying a moving maglev vehicle 
suspended by multiple magnetic forces Gk as follows (Yau, 2009): 
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together with the following non-homogeneous boundary conditions due to vertical support movements: 

 (0, ) ( , ) (0, ) ( , ) 0,j j j ju t u L t EIu t EIu L t′′ ′′= = = =  (2) 

where ( ) ' ( ) / x• = ∂ • ∂ , ( ) ( ) / t• = ∂ • ∂ , uj(x,t) = vertical deflection of the jth span, L = span length, K = 
number of magnetic wheel-sets attached to the rigid levitation frame, ( )δ •  = Dirac's delta function, H(t) 
= unit step function, k = 1, 2, 3, …, Kth moving magnetic wheel on the beam, tk = (k - 1)d/v = arrival time 
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of the kth magnetic wheel into the beam, and xk = position of the k-th magnetic wheel on the guideway. 
By considering aerodynamic lift force and pitching moment, the equations of motion for a 4-DOF maglev 
vehicle are given as: 

Lower Beam (levitation frame): 
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Upper Beam (car body): 
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in which dk = distance of the kth magnetic wheel to the midpoint of the lower beam, 
2 2

1
/12 K

bT b w kk
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=
= + ∑  = total moment of inertia for the rigid levitation frame, 2 /12v vI m l= = 

moment of inertia for the rigid car body, and 0 ( / )v b wf m m Km l g= + + = average weight per unit length. 
Eq. (3) represents the equations of motion for the levitation frame interacting with the guideway and Eq. 
(4) for the rigid car body. Besides, from the condition of static equilibrium for the suspended maglev 
vehicle, one can obtain the following static electromagnetic force at the kth magnetic wheel from Eq. (3) 

 ( ) ( )2 2
0 0 0 0 0 0 0 0 0 0( , ) / / ,   / / .kG i h i h f l K f l h i Kκ κ= = =  (5) 

Control Equation of the maglev system 
By the theory of electromagnetic circuits, the electromagnetic equation of magnet current and control 

voltage for the kth magnetic wheel in the magnetic suspension system is given by (Sinha, 1987) 

 0 0
( / ) ,k k

k k
d i h R i V

dt
Γ + =  (6) 

where 0 02κΓ = = initial inductance of the coil winding the suspension magnet, R0 = coil resistance of 
electronic circuit, and Vk = control voltage. To observe the dynamic response of a moving mgalev vehicle 
system, this study will only consider the PI controller with constant tuning gains for a specific desired air 
gap. The control voltage of Vk can be expressed using PI tuning algorithm as (Astrom and Hagglund, 
1988; Ogata, 1997; Yau, 2009) 

 
0

,
t

k p k i kV K e K e dt= + ∫  (7) 

where Kp = proportional gain and Ki = integral gain. Let us adopt the variable transformation as 
/k k ki hγ = , and the error function of 0 0 0/ /k k k ke i h i h γ γ= − = −  in the control process. Then 

substituting Eq. (7) into Eq. (6) and differentiating this equation with respect to time, after some 
mathematical manipulation, one can achieve the following differential equation for control error function 
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With the aid of control error function ek and 0 0 0/i hγ =  defined previously, the equations of motion in 
Eqs. (3) and (4) for an EMS maglev vehicle are rewritten as (Yau, 2009) 
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The solution of the nonlinear and coupled equations in Eqs. (8) and (9) can yield the dynamic response of 
the maglev vehicle moving at constant speeds. An incremental-iterative procedure needs to be carried out 
in dynamic analysis of maglev vehicle/guideway coupling system. 

Genralized equations of guideway girders 
The response of dynamic deflection u(x,t) in Eq. (1) associated with the homogeneous boundary 

conditions in Eqs.(2) can be solved by Galerkin’s method (Yang et al., 2004; Yau, 2009) and computed by 
Newmark’s method (Newmark, 1959) in the time domain. According to the homogeneous boundary 
conditions shown in Eqs. (2), the dynamic deflection (udj) of a simple beam can be approximated by (Yau, 
2009): 
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where qjn(t) means the generalized coordinate associated with the nth assumed mode of the jth span. First, 
multiplying both sides of Eq. (1) with respect to the variation of the dynamic deflection, and then 
integrating the equation over the beam length L, one can obtain the following generalized equation of 
motion for the nth dynamic system of the jth beam: 
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where 4( / )nk EI n Lπ= = generalized stiffness, and the generalized magnetic force is 
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with /n n v Lϖ π= (Yang et al., 2004; Yau, 2009). 
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Fig. 3. Relations between drag coefficient (○- Cx), lift coefficient (□- Cy), pitching moment 

(∆ - CM ) from angle of attack α. (Prykhodko et al.) 

Aerodynamic forces on the moving maglev vehicle 
Since only the vertical and pitching vibrations of the beam are concerned, the lateral vibration of the 

beam caused by aerodynamic drag force will be ignored. The aerodynamic lift force Fy and pitching 
moment Mz acting on the running vehicle can be expressed as function of aerodynamic coefficients in 
terms of angle of attack (α ) as follows (Prykhodko et al.): 

 
22

( ),    ( ),
2 2

v
y y z M

Sv hSvF C M Cρρ α α= =  (13) 

where ρ  = the air density, α = angle of attack, S = vehicle frontal area, hv = reference heigh, Cy = 
aerodynamic lift coefficient, and CM = aerodynamic pitching moment coefficient. As indicated in Fig. 3, 
the aerodynamic coefficient curves established by experimental means are nonlinear functions of angle of 
attack α , which were obtained with the mean components given by Prykhodko et al. Here, the 
aerodynamic coefficient curves are first approximated by a number of piecewise connected linear 
segments through subdivision and then calculated using an interpolation method after the pitching rotation 
of the vehicle response has been computed. With this, an incremental-iterative approach can be employed 
to analyze the time history response of the bridge under the simultaneous action of the train and wind 
loads. 

INCREMENTAL-ITERATIVE APPROACH 
Due to the motion-dependent nature of control electromagnetic forces and velocity-dependent 

characteristics of aerodynamic forces, the nonlinear dynamic analysis of the maglev vehicle system needs 
to be solved by iterative method. As shown in the analysis flowchart of Fig. 4, the procedure of 
incremental iterative for nonlinear dynamic analysis involves three phases: predictor, corrector, and 
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equilibrium checking (Yau, 2009). In this paper, the root mean square of the sum of the unbalanced forces 
for the moving maglev vehicle system is larger than preset tolerance (say 10-3) iteration for removing the 
unbalanced forces involving the two phases of predictor and corrector should be repeated. As indicated in 
previous section, the aerodynamic coefficient curves are approximated by a number of piecewise 
connected linear segments through subdivision and calculated using an interpolation method after the 
pitching rotation of the vehicle response has been computed by an iterative procedure for extracting the 
unbalanced force from the maglev-vehicle/guideway coupling system. 

 
Fig. 4. Flow chart of dynamic analysis. 

Table 1. Properties of the guideway girder 
L (m) EI (kN m2) m (t/m) c (kN-s/m/m) f1 (Hz)

25 2.5x107 3.76 15.4 6.5 

 

Table 2. Properties of the maglev vehicle 
L (m) K mb (kg/m) mv (kg/m) mw (kg) cv (N s/m) kv (N/m) i0 ( Ω ) R0 (A) 

25 8 1200 600 200 4.1x103 7.5x103 25 1.0 
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Table 3. Optimal PI parameters based on Z-N tuning rule 
h0 (m) Kcr Tcr (s) Kp (= 0.45Kcr) Ki (= 0.54Kcr/Tcr) 
0.030 0.095 0.15 0.043 0.34 

NUMERICAL EXAMPLES 
Figure 2 shows a maglev vehicle is traveling over a series of guideway girders with identical spans at 

constant speed v. The properties of the guideway girder and maglev vehicle are listed in Tables 1 and 2, 
respectively. Table 3 is the list of optimal PI parameters based on Z-N tuning rules for the on-board 
controller, from which the critical proportional gain Kcr and critical period Tcr have been obtained by Yau 
(2009). The time step of 0.001s and the traveling distance of 300m (12 spans) are employed to compute 
the dynamic response of the traveling maglev vehicle. In addition, to account for the random nature and 
characteristics of guide-rail irregularity in practice, the following power spectrum density (PSD) function 
(Yang et al., 2004) is given to simulate the vertical profile of track geometry variations 
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where Ω = spatial frequency, and Av, (= 1.5x10-7 m), rΩ  (= 2.06x10-6 rad/m), and cΩ (= 0.825 rad/m) 
are relevant parameters. In the following examples, the traveling speeds of the maglev vehicle are ranged 
from 100 km/h to 700km/h with an increment of 5km/h. 
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Fig. 5. Rail irregularity (vertical profile). 

Maximum response analysis 
Consider the optimal PI parameters listed in Table 3, which was obtained from Yau (2009). Let us 

define the maximum vertical acceleration compued herein as follows: 

 ( ),max 1,2,...,
maxv v k v k K

a u d θ
=

= +  (15) 

Figure 6 depicts the maximum vertical acceleration (av,max) of the rigid car body against the speeds. Such a 
relationship is denoted as av,max–v plot in the following. As can be seen, the acceleration amplitude of the 
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maglev vehicle increases along with the increase of running speeds. In addition, Fig. 7 depicts the 
corresponding maximum response (amax) of midspan acceleration at the departure guideway girder. The 
relationship between ama and moving speed v is called as av,max–v plot in the following. As the plot 
indicated, the maximum acceleration of midspan of the guideway girder also increases with the increase 
of moving speeds. 

Effect of aerodynamic forces 
For the purpose of illustration, let us consider the aerodynamic coefficients of lift and pitching 

moment shown in Fig. 3. With the incremental iterative procedure previously, the corresponding av,max–v 
plot and amax–v plot for the maglev vehicle and the midpoint of the departure guideway girder have been 
drawn in Figs. 6 and 7, respectively. As indicated in Fig. 6, the inclusion of aerodynamic forces has 
generally amplified the response of the running maglev vehicle, especially for the higher speeds over 
600km/h. Moreover, the results show that the amax-v plots in Fig. 7 for the moving speeds lower than 
600km/h are almost identical. One of the reasons is that the inertial force and aerodynamic effect induced 
by the running maglev vehicle acting on the guideway girder is much smaller than the static weight of the 
vehicle. But as the maglev vehicle moves on the guideway over 600km/h, the effects of inertial and 
aerodynamic forces acting on the vehicle will become rather significant on the guideway response. 
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Fig. 6. av,max-v plot of the maglev vehicle.   Fig. 7. amax-v plot of departure span of the guideway. 

CONCLUSION 
Considering the quasi-static aerodynamic lift and pitching moment acting on a running EMS-type 

maglev evhicle, the nonlinear dynamic analysis for the vehicle installed with an on-board PI controller 
was carried out using an incremental-iterative procedure involving three phases: predictor, corrector, and 
equilibrium checking. Based on the present study, some observations are drawn as follow: (1) The 
numerical examples demonstrate that the proposed PI controller based on Z-N tuning method can 
reasonably control the maglev system for the EMS-type maglev vehicle moving at high speeds; (2) The 
maximum acceleration amplitude of the moving maglev vehicle is significantly amplified with the 
increase of moving speeds; (3) The aerodynamic forces play an important role in affecting the interaction 
response of maglev-vehicle/guideway system due to their velocity-dependent characteristics, especially 
for the higher speeds over 600km/h. Such a phenomenon should be taken into account in the stage of 
analysis and design of high speed maglev transport system; (4) From the practical viewpoint of operating 
maglev vehicles, the inclusion of cross wind forces with turbulent flow is necessary to be carried out in 
future study. 
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