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INTRODUCTION

Extensive investigations are presently under way the
world over of the interaction between matter and
intense femtosecond laser pulses with an energy flux
density of the order of 

 

10

 

14

 

 W/cm

 

2

 

 and higher. This is
associated with both the fundamental aspects of the
behavior of matter in ultrastrong laser fields and various
applications such as the development of new sources of
X-ray radiation, the study into the canalized propaga-
tion of laser pulses in waveguide structures, and the
laser generation of shock waves. In view of this, Rus-
sian researchers are presently developing close cooper-
ation with foreign research centers with operating fem-
tosecond laser facilities (Israel) and with those under
construction (Germany); at the same time, a Russian
experimental femtosecond facility is under construc-
tion at the Institute of High Energy Density (IHED) in
Moscow.

Because of serious difficulties presented by the
diagnostics of the state of matter during ultrashort
(femto- and picosecond) times and high material costs
of such experiments, the theoretical (both analytical
and numerical) methods of describing the interaction
between femtosecond laser pulses and matter are gain-
ing in importance. In the general case, the problem is
very complicated, because it involves the description of
the processes of absorption of the energy of laser radi-
ation in the target matter, of optical and thermal ioniza-
tion of the target matter under the effect of a laser pulse,
of heating of the plasma being formed and accompany-
ing phase transitions, of hydrodynamic flows, and of

plasma radiation. For this reason, the initial stage of
investigations consists in constructing models which
offer the simplest way of estimating the importance of
various physical phenomena occurring as a result of
irradiation of a target and of estimating the parameters
of plasma being formed, such as the density, tempera-
ture, pressure, and ion composition.

It is our objective to construct such models (both
analytical and numerical) and use them to perform pilot
investigations of the effect made on an aluminum target
by laser pulses with parameters corresponding to those
of femtosecond facilities under construction, DESY
(Hamburg, Germany) and IHED (Moscow, Russia).

1. PHYSICAL MODEL

We will treat the following problem. A linearly
polarized laser pulse with a duration of 10 fs < 

 

t

 

p

 

 < 1 ps,
peak intensity of 

 

10

 

13

 

 W/cm

 

2

 

 

 

≤

 

 

 

I

 

max

 

 < 10

 

18

 

 W/cm

 

2

 

, and
wavelength of 10 nm < 

 

λ

 

0

 

 < 10 

 

µ

 

m. It is required to find
the hydrodynamic characteristics of the plasma formed
on the surface of a solid target under the effect of such
a pulse, namely, the electron and ion temperature, ion
composition, density, degree of expansion, and pres-
sure. These quantities must be determined both during
times of the order of laser pulse duration and during
much longer times when the shock wave propagating
deep into the target begins to overtake the ionization
wave. In constructing simple physical models which
enable one to estimate the parameters mentioned
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above, we will proceed from the following simplifying
assumptions.

It is known [1, 2] that complex processes of lattice
melting and of boiling and evaporation of the liquid
being formed occur when solids are affected by laser
pulses of moderate peak intensity 

 

I

 

max

 

 = 10

 

5

 

–
10

 

12

 

 W/cm

 

2

 

. At the same time, calculations reveal that,
in the case of more intense laser pulses (

 

I

 

max

 

 ~ 10

 

13

 

–
10

 

14

 

 W/cm

 

2

 

), the characteristic temperature of the
resultant plasma is of the order of 10 eV; in view of this,
the foregoing processes may be ignored at least in a first
approximation. In the case of higher laser intensities
(

 

I

 

max

 

 

 

*

 

 10

 

14

 

 W/cm

 

2

 

), the characteristic plasma temper-
ature turns out to be of the order of 100 eV and higher;
in this case, the resultant plasma, in spite of its high
density (of the order of solid-state), in a first approxi-
mation may be treated as ideal.

During the time of effect of a subpicosecond laser
pulse, the plasma expands to a distance that is much
less than the wavelength, so that the laser radiation is
largely absorbed in the supercritical region. In so doing,
subpicosecond times are not sufficient for various
plasma instabilities to develop.

No electric fields are present along the gradient of
plasma density in one-dimensional geometry or for an

 

S

 

-polarized laser pulse. Therefore, the generation of hot
electrons may be ignored.

The basic equations of the developed physical model
are given below with due regard for the foregoing.

 

1.1. Set of Hydrodynamic Equations

 

In order to describe the effect of laser radiation on
solid-state targets with due regard for the processes of
absorption of the energy of laser radiation, ionization,
heating and scatter of the target material, and electron-
ion relaxation, we will use a set of hydrodynamic equa-
tions for the total concentration of atoms and ions 

 

n

 

at

 

,
the velocity of hydrodynamic motion of quasi-neutral
plasma 

 

U

 

, and the energy (per particle) of electrons 

 

e

 

el

 

and ions 

 

e

 

ion

 

, which consistently takes into account the
ionization processes in matter [3],
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Here, 

 

n

 

at

 

 = ,

 

 where 

 

n

 

q

 

 is the concentration of
ions subjected to 

 

q

 

-fold ionization (

 

n

 

0

 

 is the concentra-
tion of neutrals) and 

 

z

 

n

 

 is the nuclear charge. The elec-
tron concentration in the approximation of quasi-neu-
trality of the plasma being formed is 

 

n

 

 = 

 

Zn

 

at

 

, where 

 

Z

 

 =

 

n

 

q

 

 is the mean ion charge. In Eqs. (1)–(4),

 

P

 

 and 

 

P

 

ion

 

 denote the electron and ion pressure, 

 

ρ

 

 =

 

n

 

at 

 

m

 

ion

 

 is the density, and 

 

m

 

 and 

 

m

 

ion

 

 denote the electron
and ion mass, respectively;

 

(5)

 

is the density of the power transferred from electrons to
ions in their collisions (electron–ion relaxation), where

 

T

 

 and 

 

T

 

ion

 

 denote the electron and ion temperature, and

 

ν

 

ef

 

 is the characteristic frequency of electron–ion colli-
sions. The amplitude of oscillatory velocity of electrons
in a laser field with the intensity envelope 

 

E

 

1

 

 is defined
as 

 

V

 

E

 

 ≡ e|E1|/[mω0], where ω0 = 2πc/λ0 is the laser fre-
quency. The density of inverse-bremsstrahlung heating
is described by the equation

(6)

in which k0 = ω0/c is the vacuum wave vector of radia-

tion, EL =  is the vacuum amplitude of the
field, IL is the intensity of laser radiation, and ε is the
permittivity. Expression (6) for QIB is valid in the
approximation of weak spatial dispersion of permittiv-
ity, i.e., at not too high temperatures (T < 1 keV), when
the electron-transit time in a field nonuniformity of a
characteristic size is much longer than the characteris-

tic time of electron–ion collisions ~ . The functions

K1( ) and K2( ) appearing in Eqs. (2), (3), and (6)
have the form

The heat flux density is

(7)

where the factor κZ = [1 + 4.79/Z – 6.02/Z2 + 9.13/Z3 –
4.65/Z4]–1 allows for the effect of electron–electron col-
lisions on the thermal conductivity coefficient. Expres-
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sion (7) implies that the heat transfer is performed by
electrons. As was demonstrated by Fraenkel et al. [4],
the radiation heat transfer may play an important part
for heavy elements (under experimental conditions of
[4] – BaF2, zn(Ba) = 56). The term QJ on the right-hand
side of Eq. (3) characterizes the expenditure of energy
for thermal ionization,

(8)

Here, Uq is the q-fold ionization potential,  is the
total frequency of q-fold thermal ionization, and Rq is
the total recombination frequency. The total rate of
thermal recombination in Eq. (3) is determined in the
form

(9)

Set of equations (1)–(4) is derived in the approxima-
tion of relatively low intensity of the high-frequency
laser field which affects matter, i.e., when the condition

(10)

is valid, where VTe ≡  is the thermal velocity. This
approximation is justified in the bulk of the thermal
wave propagating into the target, where the field is low
because of the skin effect. The violation of this approx-
imation in the skin is taken into account by substitution
of the quantity νefκL  for the effective collision fre-
quency νef, where

(11)

is Langdon’s correction [5].

For closure of Eqs. (1)–(11), one must calculate the
envelope of the intensity of electric field in matter E1,
as well as determine the ionization state of the plasma

being formed by calculating the quantities nq – 1, ,
and Rq (see below). In addition, one must determine the
form of the equations of state P = P(n, T), Pion =
Pion(nat , Tion) and eel = eel(n, T), eion = eion(nat, Tion) and
calculate the collision frequency νef . Note that the set of
equations (1)–(4) and expressions (5)–(9) for the
quantities appearing in these equations are derived,
strictly speaking, in the approximation of an ideal two-
temperature plasma. In this case, P = nT, Pion = natTion,
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eel = 3T/2, eion = 3Tion/2, and the effective frequency of
electron–ion collisions νef has the form

(12)

In Eq. (12), e is the magnitude of the electron charge
and Λ is the Coulomb algorithm, which may be conve-
niently written for a weakly nonideal plasma as

where ΓD is the Debye nonideality parameter, and rDe is
the Debye radius.

In order to include the effects of plasma nonideality,
one must first of all adjust the value of the collision fre-
quency νef which defines both the laser radiation energy
to be absorbed (see formula (6)) and the heat flux given
by Eq. (7). The effective frequency of electron–ion col-
lisions νef given by expression (12) increases indefinitely
at T  0 and is apparently invalid at low temperatures.
At temperatures T < 34 eV nat/6 × 1022 cm–3)(Z/10)5/6, the
electron free path le ~ VTe/νlf (νlf = (3π/32)νef is the
effective low-frequency rate of collisions, νef is calcu-
lated by formula (12)) becomes shorter than the mean

distance between ions  = . Under these
conditions, the collision frequency may be estimated by
the cell model of plasma [6] as ν = v av/[2 ] with v av =

v (1 + ), where v  is the magnitude of the electron
velocity and

(13)

is the parameter of electron–ion interaction for a highly
nonideal plasma. We assume that Γze @ 1 to derive

(14)

where ωpe =  is the plasma frequency. In
performing numerical calculations, the quantity

ωpe/  was the upper limit of the electron collision
frequency. In the region of even lower temperatures,
i.e., below the Fermi temperature TF = (3π2n)2/3"2/(2m),
the following formula may be used for the effective col-
lision frequency in a metal plasma, written in view of
the effect of electron–electron collisions [7]:

(15)

where ν0 is the electron–phonon collision frequency.
In addition to adjusting the expression for the colli-

sion frequency at low temperatures, one must further
include the variation of the expression for the specific

electron energy. At T < TF, the energy eel(T) =  ≡
(π2/4)T2/TF . In the calculations referred to below and
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performed in a wide temperature range, the following
approximation expression was used:

where  ≡ 3T/2. Note that, although the described
model is rather approximate in the low-temperature
region when the plasma is highly nonideal, indirect data
are available which indicate that this model is capable
of adequately describing both the coefficient of absorp-
tion of laser radiation in the target (see Section 1.2
below) and the heat wave propagating in the target (see
Part 2). The latter fact is due to the fact that, as was
demonstrated by relevant calculations, under condi-
tions of peak intensity of laser radiation Imax >
1014 W/cm–3, the electron temperature is close to or
exceeds 100 eV in the bulk of the heat wave during
most of the time of laser pulse effect on the target.
Under these conditions, one can expect that the plasma
nonideality will have an insignificant effect on the basic
parameters, namely, the maximal temperature and the
characteristic width of the heat wave, although it may
strongly affect the shape of the leading front of the heat
wave, where the plasma is always highly nonideal.

Above, we discussed the electron component of
plasma. As to the ion component, because T ion ! T, it
may be highly nonideal even when the electrons are in
the state of ideal gas. Nevertheless, simple reasoning
reveals that the choice of equations of state for ions
must not have a strong effect on the parameters of the
heat wave propagating in the target, at any rate, during
times less than a few picoseconds. Indeed, the absorp-
tion of laser radiation energy and the heat transfer are
largely accomplished by electrons.1 However, the time

of electron–ion relaxation of energy ΓT = 2 m/mion

(see formula (5)) significantly exceeds the duration of
subpicosecond laser pulses; therefore, the ion energy
and pressure under these conditions will be much lower
than those in the case of electron gas. The foregoing is
further associated with the fact that the electron con-
centration is Z times the ion concentration. For these
reasons, the ion component has almost no effect on the
electron gas energy throughout the subpicosecond laser
pulse and, therefore, the exact form of the terms eion and
Pion is of no importance in this case. For a rough estima-
tion of the degree of heating of the ion component,
expressions corresponding to the ideal gas approxima-
tion may be used for these terms.

1 This is characteristic of short subpicosecond laser pulses with
S-polarized radiation. Demchenko and Rozanov [8] have demon-
strated the possibility of effective absorption of energy by ions
for longer P-polarized laser pulses, which arises under conditions
of development of strong oscillation of plasma density in the
neighborhood of the critical point.

eel T( ) emet
el epl

el / emet
el( )3

epl
el( )3

+3 ,≈

epl
el

νef
1–

1.2. Description of Absorption of Laser Radiation

To determine the density of absorbed power given
by Eq. (6), one must calculate the electric field inten-
sity. We will assume that the electric field gradient
exists only in one dimension along a normal to the tar-
get surface (x axis); this presumes a not too sharply
focused laser pulse whose transverse dimension
exceeds the characteristic longitudinal dimension of the
region of field localization (as a rule, ten nanometers or
less). We will assume the laser pulse is S-polarized and
incident on the target surface at an angle θ to its normal.
In this case, assuming the spatial dispersion is small, we
will find that the envelope of the electric field intensity
E1 = eyE is determined from the solution of the problem

(16)

Here, the permittivity ε for an ideal plasma is described
by the expression

(17)

The functions K1 and K2 determined in Section 1.1 exhibit
the asymptotic behavior K1(   0) = K2 (   0) = 1
and K1(   ∞) ~ (315/8)/ 2, K2(   ∞) ~ 6/ 2,
where formula (17) reduces to the well-known cases for
the normal high-frequency and normal low-frequency
skin effects, respectively. For a metal, the permittivity
is found by the Drude phenomenological formula,

(18)

with the frequency ν calculated by formula (15), where

nc = n /[4πe2] is the critical concentration. The
approximation transforming to formulas (17) and (18)
in the extreme cases is used in the intermediate region.

Equations (16) may be used to find the absorption
coefficient A = 1 – Ir/IL (Ir is the intensity of radiation
reflected from the target),

(19)

This quantity may also be found from the conditions
of continuity on the plasma–vacuum interface of the tan-
gential components of electric and magnetic fields as

(20)

where ζ is the impedance dependent on the field distri-
bution E(x > 0) within the plasma. Comparison of the
results of calculation of A by formulas (19) and (20)
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enables one to check the accuracy of the numerical
solution of wave equation (16).

Under conditions of a weak spatial dispersion for a
homogeneous plasma with a stepped density profile,
the impedance may be calculated by the formula

(21)

We substitute the permittivity given by Eq. (17) into
(21) to derive from formula (20) the following expres-
sion for the absorption coefficient of a hot plasma of solid-
state density with the electron concentration n @ nc:

(22)

ζ 1/ ε θ( )sin
2

– .=

A θ( )2 2 ω0/ωpe( ) K3 K1– /K3,cos=

K3 K1
2 ν̃2

K2
2+ .≡

In two extreme cases of normal low-frequency skin
effect at  @ 1 and normal low-frequency skin effect at

 ! 1, it follows from Eqs. (22) that

(23)

Figure 1 gives, for a homogeneous aluminum
plasma, the results of calculation of the absorption
coefficient A of normally incident (θ = 0) laser radiation
by the aforementioned model (20), (21) under condi-
tions of normal skin effect (i.e., disregarding the spatial
dispersion) with the permittivity given by Eqs. (17) and
(18) in the region of degenerate plasma and with the
collision frequency determined in the respective
regions by formulas (12), (14), and (15). The results of
a more exact calculation in view of the spatial disper-
sion and absorption in a nonideal plasma, borrowed
from [9], and analytical approximations (23) are also
given in Fig. 1. The value of the average ion charge
was calculated by the Saha model with a “cut-off” (see
Section 1.3).

The results of comparison of curves in Fig. 1a lead
one to conclude that the suggested simple model ade-
quately describes the absorption coefficient in a wide
temperature range. Respective estimates (see, for
example, [3]) demonstrate that the collisionless absorp-
tion in modes, where the spatial dispersion is signifi-
cant (the so-called modes of sheet-inverse-bremsstrahl-
ung and anomalous skin effects, see [3]), in the case of
short-wave laser pulses becomes significant only at
rather high temperatures in the vicinity of 1 keV. The
inclusion of collisionless absorption at high tempera-
tures in the calculation [9] leads to somewhat higher
values of the absorption coefficient compared to those
obtained by the model described in Section 1.2 (see the
solid and dashed curves in Fig. 1a at T > 800 eV).

The calculation results in Fig. 1a further demon-
strate that the limiting formulas (23) extensively used in
the literature produce an inadequate accuracy of calcu-
lation of the absorption coefficients for the parameters
of the problem being treated. However, the use of the
approximation formula

(24)

where Alf and Ahf are the limiting absorption coefficients
of Eq. (23) at  @ 1 and  ! 1, respectively, enables
one to adequately describe the absorption coefficients in
a wide range of parameters of the problem (see Fig. 1).

In formula (24), the parameter κA is the so-called
variation factor of absorption. It is equal to the ratio of
the absorption coefficient for an expanding inhomoge-
neous plasma of the target being irradiated, when the
nonlinear field dependence of absorption is taken into
account using the Langdon correction (11), to the field-
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Fig. 1. The absorption coefficient A of an aluminum plasma
with a stepped boundary as a function of electron tempera-
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normal density; (c) λ0 = 0.4 µm, 0.1 normal density;
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linear absorption coefficient for a homogeneous semi-
infinite plasma of the same maximal temperature and
solid-state density. The data in Fig. 1 were obtained
with the coefficient κA = 1. For a real plasma formed on
the surface of a solid-state target irradiated by a laser
pulse of an intensity in excess of 1014 W/cm2, the coef-
ficient κA weakly depends on time at t > 10 fs and may
be taken to be κA ≈ 0.4 (see [3]). The fact that, for an
expanding plasma and/or significant values of laser
intensity, κA < 1 is associated with the decrease in
absorption due to a decrease in the effective collision
frequency because of a drop of the plasma density
(expansion) or because of the presence of the Langdon
correction (11). Note that the choice of the coefficient
κA further enables one to take into account the fact that
it is not the entire energy of laser radiation that converts
to the energy of thermal motion of electrons: a signifi-
cant part of the absorbed energy transforms to the
energy of hydrodynamic motion of plasma and is spent
to perform ionization [3, 10].

1.3. Description of Ionization of Matter

The dynamics of heating and energy transport in a
plasma formed upon stimulation of a target by an
intense laser pulse largely depends on the average ion
charge which affects the kinetic coefficients. In addi-
tion, the expenditure of energy to ionize matter may
affect the distribution of absorbed energy in matter.
This defines the need for self-consistent inclusion of
ionization processes in describing the effect of radia-
tion on matter.

In order to determine the quantities S, QJ, and Z
entering Eqs. (2) and (3), one needs to calculate the

total ionization frequencies , the total recombina-
tion frequencies Rq, and the concentrations nq – 1 of ions
with the degree of ionization q – 1. Equations for nq

may be written as

(25)

(26)

where  and Rq denote the total frequencies of ther-
mal ionization and recombination, respectively, aver-
aged over energy levels. The ionization and recombina-
tion frequencies and the level distribution of ion popu-
lations are defined by the plasma composition,
temperature, and density and by the parameters of the
electromagnetic field irradiating the plasma, namely,
the wave intensity and length.
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In the case of low electron temperatures (up to
10 eV), the determining processes will be those of opti-
cal ionization of matter in the electric field of laser
wave decaying in the skin of the target.2 

Estimation of the role of optical ionization of
matter. To obtain a lower estimate of the degree of opti-
cal ionization of the surface layer of a target, we will
ignore the decrease in the ionization potential in a dense
plasma and treat the approximation of isolated atom,
the theory of whose ionization is fairly well developed.
Such an approximation is justified in the case of multi-
ple ionization of ions with high ionization potentials.

We will use the simple model suggested by Krainov
and Manykin [11] for the ionization of medium and
heavy atoms in a steady-state electric field. The steady-
state field approximation is valid under conditions of
tunnel ionization where the electron-potential barrier
collision frequency exceeds the ionizing field fre-
quency. In so doing, the Keldysh parameter is γK =

ω0 /eE < 1, which enables one to substitute the
envelope of the intensity of variable field E into the
respective formulas for a steady-state field. In the mode
of multiphoton ionization with γK > 1, the optical ion-
ization frequency turns out to be higher than it follows
for the formulas derived for the mode of tunnel ionization;
therefore, the formulas given below will in this case pro-
vide a lower estimate for the degree of ionization.

We follow Krainov and Manykin [11] and assume
that the electrons being ionized are in the field of
“mean” ion with the degree of ionization κ = Z/zn (Z is
the ion charge), described by the self-consistent Tho-
mas–Fermi potential Uκ,

(27)

Here, rκ is the radius of an ion with the degree of ion-
ization κ and φ(x) is the solution to the problem

(28)

where x = r/b, Xκ = rκ /b, b ≡ (1/2)(3π/4)2/3aB  ≈

4.66 × 10–9  cm, and aB is the Bohr radius. In the
potential given by Eq. (27), the electrons fill the energy
states from –∞ to Uf = –Ze2/rκ . In the presence of an
electric field with the intensity amplitude E, the poten-
tial Uκ changes to the potential Vκ = Uκ – erE, which

has a maximum with energy V0 = –2e . In so
doing, all electrons of energy from V0 to Uf are ionized,
with the ionization proceeding until the Fermi energy

2 Note that the quantity QJ in formula (3) describes the expenditure
of energy on thermal ionization of matter, which is zero in the
case of optical ionization.

2mUq
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Uf becomes equal to V0 . The dimensionless ion radius
Xκ = rκ /b is found from the condition of equality of Uf

and V0; after that, relations (28) are used to derive the
equation for the degree of ionization κ = Z/zn. In con-
trast to [11], we will take into account the fact that, in
the plasma of a higher-than-critical concentration form-
ing on the target surface, the field on the interface with
vacuum E(x = + 0) is approximately ωpe/[2ω0] times

lower than the vacuum field EL =  (in the mode
of high-frequency skin effect). As a result, we find that
the dimensionless ion radius Xκ and the degree of ion-
ization κ are defined by the equations

(29)

(30)

In Eqs. (29) and (30), φ is found from the solution given
by (28) and η is a dimensionless parameter written in
the following dimensionless units convenient for what
will follow:

(31)

Figure 2 gives the results of calculation, by formulas
(28), (29), and (30), of the average ion charge Z = κzn
for silicon as a function of the energy flux IL of a laser
pulse. The calculations were performed for three wave-
lengths: 1.25, 0.62, and 0.2 µm.

It follows from Fig. 2 that, at IL ~ 1014 W/cm2, the
average charge of silicon ions is Z ~ 1–2, and, at
IL ~ 1017 W/cm2, Z ~ 3.5–6.5. The wavelength depen-
dence of Z is in this case associated with the field atten-
uation coefficient ωpe/[2ω0]. At the same time, the
quasi-stationary model of thermal ionization discussed
in the subsequent section enables one to obtain the

8πIL/c

Xκ κ3/2/η /2.124, η I 1/2– λ 1– n 1– zn
13/6– ,≡≈

( ( (

2.124 κ1/2η φ' κ3/2/η /2.124( )+ 0.=
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---------.≡≡≡

(

(

( ( (

same values of the mean ion charge Z = 1.8 even at a
temperature of the order of 20 eV, and Z = 6 at
T = 75 eV.

Therefore, as the target is heated, the thermal ioniza-
tion will have a significantly greater effect. In addition,
the part played by thermal ionization is especially
important deep within the target at a distance from the
surface that exceeds the skin depth, where the electric
field of laser radiation, along with the probability of
optical ionization, goes to zero.

Quasi-stationary model of thermal ionization.
When the processes of ionization and recombination

are almost compensated, i.e., the rate  of variation of
ion concentration with the degree of ionization q turns
out to be much lower than both the total ionization rate
and the total recombination rate, the quasi-stationary
model of ionization nq = nq{T(t), nat(t)} may be
employed. According to Eqs. (26), this calls for the

validity of the inequalities | nq – 1 – Rqnq| ! nq – 1,
Rqnq . For this case, we rewrite Eqs. (25) in the form

where the values of concentration nq are determined

from the equalities nq – 1 = Rqnq , q = 1, 2, …, zn , to
derive from Eqs. (3) and (8) the equation

(32)

Used for simplicity in (32) is the equation of state
for ideal gas; the small term proportional to |VE|2S is
omitted.

One can see in Eqs. (32) that the coefficients Ci1 and
Ci2 may be treated as “ionization heat capacities,” and
the coefficient C3 is significant only in the regions with
divU ≠ 0.

In order to find these coefficients, we must con-
cretely define the form of the dependence nq{T(t),
nat(t)}; for this purpose, we take into account the fol-
lowing. The plasma formed on the surface of a target
irradiated by a subpicosecond laser pulse is an optically
thin medium; i.e., its thickness is much less than the
photon path defined by bremal radiation is only emit-
ted, but is not absorbed in the plasma; as a result,
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Fig. 2. The average ion charge for a silicon plasma formed
in the case of tunnel ionization of the target surface: solid
curve, λ0 = 1.25 µm; dashed curve, 0.62 µm; dotted curve,
0.2 µm.
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 = n〈 v〉 and Rq + 1 = n2〈 v1v2〉  + n  +

n , where  and  denote the cross sections
of impact ionization and triple recombination, respec-
tively, angle brackets indicate averaging over electron
velocities, and  and  are the coefficients of
dielectronic and radiation recombination, respectively
[12]. The dielectronic recombination may be significant
only in the case of a superdense (with a higher-than-
solid-state density) plasma [13], and the radiation
recombination frequency estimated by Seaton’s model
[14] is low compared to the three-particle recombina-
tion frequency for a high-temperature (T * 102 eV)
solid-state plasma. Therefore, we can assume the valid-
ity of the inequality  +  @ n〈 v1v2〉 ,
which makes it possible to describe the ionization equi-
librium by the Saha model with nq determined from the
equalities

(33)

Here, = "  is the de Broglie wavelength
of electron and gq is the statistical weight of the ground
state of an ion with the degree of ionization q (we
ignore the populations of excited states).

In the case of transition from lithium-like to helium-
like ion, the ionization potential abruptly increases, and
the rate of ionization abruptly decreases; this may limit
the validity of the steady-state model. In this case, the
forbiddenness of the ionization of helium-like ion is
justified, when q in expressions (33) runs from 1 to zn – 2,
and the ion concentrations  and  are taken to be
zero. This model will be referred to as the Saha model
with a “cut-off.” 

The electron temperature dependence of the average
ion charge Z, “ionization heat capacities” Ci1, Ci2, and
coefficient C3, calculated by the Saha model and by the
Saha model with a cut-off for an aluminum plasma of
solid-state density (nat = 6 ×1022 cm–3) is given in Fig. 3.

Kinetic model of thermal ionization. In accor-
dance with the foregoing, we will assume the processes
of radiation and dielectronic recombination to be of no
significance and treat the unsteady-state plasma
dynamics in view of only the collisional ionization and
recombination processes. In so doing, we will use the
well-known mean ion approximation within which it is
assumed that a plasma contains only one sort of ions of
concentration nat obeying the continuity equation (1)
and continuously varying as a result of ionization by a
charge Z. We take into account the three-particle
recombination with the aid of the detailed balancing
principle and use the semiempirical formula of Lotz
[15] for the rate of impact ionization  = n〈 v〉  to

Wq 1+
th σiq

σrq 1+
κdq 1+

κνq 1+
σiq

σrq 1+

κdq 1+
κνq 1+

κdq 1+
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q 1 … zn., ,=

–

λ– 2π/ mT( )

nzn 1– nzn

κ iq
σiq

derive, in view of (1), the equation for the average
charge Z [16],

(34)

In this formula, the average ionization frequency

 is approximately replaced by a
function of the average degree of ionization nκ(Z),
where n = Znat and

(35)

In Eqs. (35), the coefficient 6 × 108 has the dimen-
sion of cm3/s; ξn is the number of electrons on a shell
with the main quantum number n; Pn is the number of
electrons in closed electron shells (Pn = 0, 2, 10, 28, …
for n = 0, 1, 2, 3, …, respectively); Un is the effective
potential of a shell number n in the “hydrogen” approx-
imation; 4(x) is a function equal to zero at x < 0, to
unity at x > 1, and to x at x ∈  [0; 1]; and the function of

Φ is defined as φ(x) ≈ ln 1 + .

The term with Z/Zeq in the right-hand part of
Eq. (34) allows for the three-particle recombination. In
so doing, the quantity Zeq denotes an equilibrium aver-
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Fig. 3. (1, 1') The average ion charge Z, ionization heat
capacities (2, 2') Ci1 and (3, 3') Ci2, and (4, 4') the coeffi-
cient C3 for an aluminum plasma of solid-state density

(nat = 6 × 1022 cm–3); (1', 2', 3', 4') Saha model, (1, 2, 3, 4)
Saha model with a “cut-off.”
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age ion charge; for given plasma temperature and den-
sity, this charge is found from the quasi-stationary Saha
model given by (33).

We can use Eqs. (34) and (35) to write the following
expression for the ionization loss density QU (instead of
Eq. (8)):

(36)

Figure 4 gives comparison of the results of calcula-
tion of the average ion charge Z for a solid-state alumi-
num plasma (zn = 13) by the unsteady-state model of
mean ion (34), (35) and by the thermodynamic Saha
model with and without a cut-off. Curves 1–5 corre-
spond to the instants of time of 10 fs, 100 fs, 1 ps, 10 ps,
and 100 ps, respectively. The calculation results lead
one, first, to conclude that the three-particle recombination
plays a significant part (compare curves 1, 2 and 6, 7)
and, second, to estimate the time required to attain ion-
ization equilibrium at different temperatures. It follows
from Fig. 4 that this time will be 10 fs or less for alumi-
num ions with the degree of ionization from three to
five, 10 to 100 fs for ions with the degree of ionization
from five to eight, and 100 fs to 1 ps for ions with the
degree of ionization from eight to eleven under condi-
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=

tions of fixed temperature and solid-state density. For
helium-like and hydrogen-like atoms, the time of relax-
ation to ionization equilibrium is much longer (about a
hundred picoseconds). Analysis of Fig. 4 reveals that,
in the case of a plasma of solid-state density at times
from 100 fs to several picoseconds, one can use the
Saha model with a cut-off; at times longer than ten
picoseconds, a uniform distribution arises with the
average degree of ionization of the ions defined by the
Saha model without a cut-off. For a more rarefied
plasma, the time of relaxation to ionization equilibrium
increases inversely as the electron concentration of the
plasma (see expression (34) for the ionization fre-
quency).

2. ANALYTICAL ESTIMATION OF TARGET 
HEATING

In order to analytically describe a heat wave propa-
gating in a target, assuming that the laser pulse is not
too sharply focused and, therefore, its transverse
dimension is much larger than the characteristic dimen-
sion of the heat wave, we will treat the simplified one-
dimensional equation for the temperature of nondegen-
erate electron gas

(37)

which includes only the basic factor of energy balance,
namely, the source of plasma heating QIB and the heat
flux qT . In solving this equation, we will assume that
the total concentration of atoms and ions nat and the
average ion charge Z are constant. In order to estimate
the effect of hydrodynamic expansion of plasma on the
energy contribution made by laser to the target and the
effect of the nonlinear dependence of absorption on the
laser field intensity [5] in the case of violation of condi-
tion (10), we will use the variation factor of absorption
κA (see Section 1.2). The average ion charge Z will be
estimated using the quasi-steady-state models of ion-
ization described in Section 1.3.

In order to determine how close the solution of
Eq.(37) may be to that of Eq. (3), we will estimate the
ratio of the terms omitted upon transition from Eq. (3)
to (37) to n∂T/∂t ~ nT/τT . Here, τT is the characteristic
time of ionization of plasma; therefore, for the short
pulses being treated, the term (mV2/2)S may also be
always omitted. The term n(V—)T/[n∂T/∂t] is of the
order of the ratio xsT/xT , where xsT ~ VsτT is the charac-
teristic distance of plasma expansion during the time

τT , Vs =  is the velocity of sound, and xT is the
characteristic dimension of temperature irregularity.
For subpicosecond laser pulses, it follows from the
results of appropriate calculations (see the next part of
this paper) that xsT < xT; therefore, the contribution by
the term (V—)T to the energy balance in the first
approximation may be ignored. The effect of plasma
expansion and, consequently, of these terms on the
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Fig. 4. The average ion charge for a solid-state aluminum
plasma (nat = 6 × 1022 cm–3) as a function of temperature:
(1–5) calculation by the unsteady-state model of mean ion
in view of three-particle recombination, (6, 7) calculation
disregarding three-particle recombination; the instants of
time of (1, 6) 10 fs, (2, 7) 100 fs, (3) 1 ps, (4) 10 ps,
(5) 100 ps; lines with black markers indicate the Saha
model, lines with white markers indicate the Saha model
with a cut-off.
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energy balance is taken into account with the aid of the
factor κA .

For longer pico- and nanosecond pulses, it is proba-
ble that xsT ~ xT and even xsT @ xT; therefore, the disre-
gard of the term (V—)T may bring about a significant
error. A similar conclusion holds for the term nTdiv(V):
nTdiv(V)/[n∂T/∂t] ~ τs/τT ~ 1, where τs is the character-
istic time of plasma expansion. Therefore, this term is
also significant, but only in the plasma corona where
V ≠ 0. With the proviso that xsT/xT ! 1, the size of the
plasma corona is small compared to the size of the
heated region; therefore, the effect of expansion (and,
consequently, of the indicated terms) on the energy bal-
ance may be ignored in the first approximation.

Note that the loss of plasma energy due to
bremsstrahlung for the subpicosecond laser pulses
being treated may always be ignored, as was done in
deriving the hydrodynamic equations, because the time
of radiation relaxation estimated as the time of twofold
decrease in the plasma temperature due to bremsstrahl-
ung by the model of Zel’dovich and Raizer [17] is

τrad = 47 (Z/10)–2 ps@ tp. It follows from [17]
that the line radiation, in contrast to the recombination
one, may always be ignored in the case when the total
area of lines is much less than the area under the Planck
curve. The assumption is likely that the line radiation
will play a prominent part in the energy balance for
heavy elements producing a large number of lines in the
region of Planck spectrum [4].

Equation (37) may be simplified if we take into
account the fact that the depth of field penetration, i.e.,
the skin thickness ls , is much less than the heated region
dimension xT for most of the laser pulse duration except
for the initial stage of heating in which the heat wave
has not yet propagated beyond the skin. This enables
one to include the absorption of laser radiation as the
boundary condition for the heat flux on the plasma–
vacuum interface rather than in the form of a volume
source QIB [18]. Thus, we arrive at the following
problem:

(38)

where qT is the x-projection of Spitzer’s heat flux (7).
In order to use the approximation formulas which

well describe the actual absorption coefficient A (see
Section 1.2), we will identify in this coefficient the
most pronounced temperature dependence,

(39)

Here, µ is a constant and CA is a coefficient dependent
on the average ion charge Z, concentration nat , wave-
length λ0, and Coulomb logarithm Λ. We will ignore
the variation of Z, nat, and Λ during the heating of
plasma, when formula (39) is used to construct a self-
similar solution describing such heating. In order to

T1/2(

n–1(

3/2( )n T / t∂∂ qT / x,∂∂–=

qT x 0=( ) AIL, qT x ∞=( ) 0,= =

A T µ– CA Z nat λ0 Λ, , ,{ } .=

estimate the effect of the time dependence of the laser
pulse intensity, we will represent IL in the form

(40)

where τp is the characteristic time of variation of the
laser pulse intensity and βI is a constant.

Because the Coulomb logarithm Λ relatively weakly
depends on the electron temperature T, and Z(T)
reaches saturation at T > 200 eV (see Fig. 4), in solving
the set of equations (38) in a first approximation, we
assume Z and Λ to be constant. In order to estimate the
effect made by the laser field intensity dependence of
the absorption coefficient and by the plasma expansion
on the obtained solution of the set of equations (38), we
will assume that the factor κA is likewise constant. In
the next approximation, the obtained solution may be
used to refine the values of Λ, Z, and κA.

In view of the foregoing assumptions, Eqs. (38),
(39), and (7) may yield the following solution for the
electron temperature:

(41)

In Eq. (41), the dimensionless coordinate φ is related to
the coordinate x along the direction of heat wave prop-
agation as

(42)

and the function Ψ(φ) is the solution to the ordinary dif-
ferential equation

(43)

with the boundary conditions

where Ψ' ≡ dΨ/dφ. The second boundary condition
replaces the condition Ψ(x = +∞) = 0.

We can use Eqs. (41)–(43) to derive an expression
for the amount of absorbed energy of laser radiation
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(per unit area) Qabs = (t)IL(t)dt; in the absence of the

hydrodynamic, ionization, and other mechanisms of
energy redistribution, this expression coincides with
that for the energy of electron heat wave (per unit area),

Qth = (3/2) × T(x)dx, and has the form

(44)

Based on Eqs. (43) and (44), we will treat a self-sim-
ilar solution for a heat wave propagating in an alumi-
num target. We represent approximation (24) in the
form of Eq. (39) to derive from Eqs. (41)–(44) self-sim-
ilar distributions T(x, t) and Qabs(t),

(45)

(46)

The self-similar function Ψ(φ), which is in this case
the solution to (43) with µ = 9/8, is shown in Fig. 5 for
a square laser pulse (βI = 0).

We will treat the restrictions imposed on the range
of validity of the derived self-similar solution. The most
significant restriction on the laser pulse duration is
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placed by the formation of a plasma corona. The condi-
tion that the variation of absorption as a result of expan-
sion is small, so that κA ≈ 1 if the dependence of A on
the laser field intensity is ignored, is written in the form
xs ! ls , where xs ~ Vst, and the skin depth for a normal
high-frequency skin effect is ls = c/ωpe . In combination
with the self-similar solution given by (45), this condi-
tion leads to the inequality

in which M is the molar mass of the target matter. One
can readily see that this inequality is valid only for
times of ten femtoseconds or less. In the case of long
times, one must take into account the decrease in the
coefficient of collisional absorption because of expan-
sion and set the variation factor of absorption κA < 1. As
was mentioned above, at tp > 100 fs, we can assume
with good accuracy that κA ≈ 0.4. It follows from the
solution of (45) and (46) that the plasma expansion
causes the most significant decrease in the total
absorbed energy of laser radiation Qabs and the target
heating depth xf and a less significant decrease in the
target surface temperature T(x = 0).

The main restriction imposed on the peak intensity
Imax of a laser pulse is associated with the application of
the linear theory of skin effect. However, in view of the
use of Langdon’s correction (11), it is sufficient to
require the validity of the inequality |VE|2[1 + νef/ω0]–2 &

 that is weaker than (10). We treat the mode of nor-
mal high-frequency skin effect (νef ! ω0, for simplicity
and take into account, in the foregoing inequality, the
fact that the field in the plasma is approximately
ωpe/2ω0 times lower than in vacuum to obtain the con-
dition for the laser pulse intensity in the form
IL & cnT/8. Upon substituting into this inequality the
temperature T found from the self-similar solution (45)
of the heat equation, we find the following upper bound
on the intensity of a square laser pulse:

(47)

where t is in femtoseconds.
As to Langdon’s correction (11), its effect on the

absorption coefficient is taken into account by the fac-
tor κA, as was mentioned above.

Note further that formula (7) for the heat flux is
valid only in the case of rather low temperature gradi-
ents, when the inequality aTλe/xT ! 1 holds, in which λe
is the electron free path, xT is the characteristic magni-
tude of the temperature gradient, and aT ≈ 50 is a con-
stant (see [19]). One can demonstrate that this inequal-
ity imposes upper bounds on fluxes of the same order as
(47). If the condition aTλe/xT ! 1 is invalid, the correla-
tion between the heat flux and the temperature gradient
becomes nonlocal and is expressed in the form of con-
volution of the flux given by Eq. (7) with some core

t ! 102 κ AI( ) 4/29– Z 31/29– λ1/29n 25– /58Λ 5/29– M1/2, fs,

( ( (

VTe
2

Imax & 2 1017 t/100( )4/19κ A
8/19λ 2/19–× n25/19

× Z/10( )35/19Λ10/19 t/τ p( )
8βI /19

, W/Òm2,

( (
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φ

Fig. 5. The self-similar solution Ψ(φ) for normal skin effect
with the approximation coefficient of absorption (24).
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[19]. However, the results of numerical calculations [3,
10] demonstrate that the nonlocality of the heat flux
largely affects the shape of the heat wave by slightly
varying its area and the value of temperature on the tar-
get surface. For this reason, the inequality aTλe /xT ! 1
is of much less significance than condition (47).

Finally, one must bear in mind that, as follows from
Section 1.2 and Fig. 1, the absorption model used in
constructing self-similar solutions underestimates the
energy contribution at T ) 1000 eV (because of disre-
gard of the spatial dispersion) and overestimates the
energy contribution at T < 200 eV (in a dense nonideal
plasma). Nevertheless, comparison with the results of
numerical calculations and with experimental data
reveals the adequate validity of self-similar solutions in
the range of relatively low temperatures T < 200 eV as
well. According to the experimental data of Fraenkel
et al. [4], a target of MgF2 irradiated by a laser pulse
with Imax = 3 × 1016 W/cm2, λ0 = 0.8 µm, and tp = 100 fs
is heated at a depth of 50 nm to a temperature of about
150 eV. At the same time, it follows from the self-sim-
ilar solution (45) with κA = 0.4, Λ = 3, and Z = [Z(Mg) +
2Z(F)]/3 = 8 that the target is heated to 150 eV at a
depth of 43 nm, which is in good agreement with the
experimental data.

Figure 6 gives the results of parametric calculation
of the dependence of the target surface temperature
both on the wavelength and on the intensity of the
square laser pulse acting on the target, performed using
both the self-similar solution constructed in this section
and self-consistent numerical simulation described in
the subsequent section. The calculation was performed
for the instant of time t = 300 fs, and the recalculation
for other instants of time may be approximately per-
formed using the correlation T ~ t4/27 (see (45)).3 In the
self-similar solution, the quantities Z and Λ were calcu-
lated by iteration with respect to the obtained value of T
(two to three iterations produce an accuracy of 5% or bet-
ter); Z was determined by the Saha model with a cut-off.

Figure 6 demonstrates good agreement between the
results of numerical and analytical calculations (dashed
contours in Fig. 6) in a wide range of parameters except
for the region of relatively low values of intensity, at
which a nonideal plasma is formed which exhibits, as
was mentioned above, a somewhat overestimated value
of the approximation absorption coefficient given by
Eq. (24) (see Fig. 1).

3. RESULTS OF NUMERICAL CALCULATIONS
The self-similar solutions obtained above may be

conveniently used to estimate the energy contribution
and profile of electron temperature during the time of
action of a femtosecond laser pulse. In order to more
accurately determine the values of these quantities both
during and after the termination of the action of the

3 For temperatures of 1 keV or less, when the spatial dispersion
may be ignored.

laser pulse, as well as to determine the characteristics
such as the plasma density and pressure, one must
numerically solve the foregoing set of equations (1–4),
(16) and (33), (34). This problem was treated in a one-
dimensional approximation when, as was indicated
above, all gradients of physical quantities are directed
only along the 0x axis perpendicular to the flat target
surface, which presumes the smallness of the character-
istic dimensions of the region of localization of the
field, of the heat wave, and of the distance to which the
plasma expands compared to the transverse dimension
of the laser pulse. Hybrid hydroelectrodynamic-ioniza-
tion one-dimensional computer codes were developed
to solve the problem. The hydrodynamic equations (1)–
(4) were solved in Lagrangian mass coordinates using
a conservative difference scheme [20] with lineariza-
tion according to Newton and subsequent solution of
the respective difference equations by the sweep
method. In so doing, splitting with respect to physical
processes was employed: the equations of continuity
(1) and motion (2) were first solved, followed by the
heat equation for electrons (3) and the equation for ions
(4). After that, on a preassigned density profile interpo-
lated to a uniform Eulerian grid, the sweep method was
used to solve the boundary problem (16) and determine
the density of absorbed power of laser radiation; then,
the integration of Eq. (34) by the Runge–Kutta method
of the fourth order of accuracy was used to determine
the ion charge at the next time step and the energy
expenditure for the ionization of matter. The accuracy
of calculation was checked by calculating the quantity

∆ ≡ |1 – [Qth +  + Qkin + Qioniz]/Qabs| × 100%, where

Qth , , Qkin , Qioniz, and Qabs denote the thermal
energy of electrons and ions, the kinetic energy of
hydrodynamic motion of plasma, the energy expendi-
ture for ionization, and the absorbed energy, respec-
tively. When the quantity ∆ exceeded a certain value,

Qth
ion

Qth
ion
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0.5 1.0 1.5 2.0 2.5 3.0
λ0, µm
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700 eV

500 eV

300 eV

200 eV

100 eV

Fig. 6. Lines of the level of temperature of the surface of an
aluminum target as a function of wavelength and intensity
of square laser pulse for t = 300 fs. Solid lines of the level
indicate the numerical solution, and dashed lines indicate
the self-similar solution (45) with the factor κA = 0.4.
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the time step automatically decreased. In the calcula-
tions, the value of ∆ did not exceed 3%.

An example of numerical solution of the foregoing
set of equations in the form of distributions of hydrody-
namic characteristics of the plasma being formed over
the target depth is illustrated in Fig. 7 for the instants of
time when the target is affected by a Gaussian laser
pulse with a full width at half maximum of intensity of
100 fs and in Fig. 8 for different instants of time after
the termination of the laser pulse action. The laser pulse
parameters correspond to those planned for the DESY
facility (Germany).

Note that the maximal electron temperature
Tmax ≈ 110 eV obtained as a result of numerical calcu-
lation (Fig. 7) agrees well with the results of self-simi-

lar solution (Fig. 6). Note further the high values of
pressure in the matter of the target being irradiated
throughout the action of the laser pulse. Upon termina-
tion of the laser pulse, the heat wave profile spreads out
significantly, and the maximal value of temperature
decreases (Fig. 8) as a result of the effect of the electron
heat conduction, of the plasma expansion, and of the
electron–ion relaxation whose effectiveness at low tem-
peratures is much higher than at low temperatures dur-
ing the time of action of the laser pulse. A shock wave
of a characteristic triangular shape forms by the instant
of time t ~ 1 ps; by the instant of time t ≈ 5 ps, this shock
wave overtakes the heat wave. By the same instant of
time, the profiles of electron and ion temperatures for
the given parameters of the problem almost level off
(Fig. 8).

Figure 9 gives the time dependence of the tempera-
ture and concentration of electrons, as well as of the
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degeneracy parameter TF/T and nonideality parameter
Γez = Ze2/[n–1/3T] of a plasma formed under the effect
of a laser pulse at a depth of 5 nm from the surface of
the target being irradiated under the same conditions as

in Fig. 7. One can see in Fig. 9 that the target matter
during most of the laser pulse action is a nondegenerate
nonideal plasma with the nonideality parameter Γez ≈ 1.

Figure 10 gives the time dependence of the same
quantities as those in Fig. 9 but for other parameters of
a laser pulse; it is planned to obtain these parameters in
the femtosecond laser facility presently under construc-
tion at IHED (Institute of High Energy Density, Insti-
tute of High Temperatures Scientific Association -
IVTAN, Moscow). Based on the foregoing data, one
can conclude that a nondegenerate highly nonideal
plasma with the parameter Γez * 2 is formed on the tar-
get surface under the conditions identified above.
Therefore, the commissioning of the last-mentioned
laser facility is of considerable interest from the stand-
point of investigations of the properties of highly non-
ideal plasma.

In order to provide an idea of the degree of expan-
sion and inhomogeneity of the plasma whose dynamics
are shown in Fig. 10, Fig. 11 gives the spatial distribu-
tion of hydrodynamic quantities at the instant of time of
300 fs.

CONCLUSIONS

We have suggested simple analytical and numerical
models which enable one to investigate the effect of
subpicosecond laser pulses on solid-state targets. The
constructed self-similar solutions make it possible to
fairly accurately estimate the parameters of the heat
wave propagating in the target being irradiated during
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the time of action of the laser pulse without resorting to
numerical simulation. A more exact calculation of heat
wave both during the time of action of the laser pulse
and during a much longer time, as well as the calcula-
tion of pressure, ionization state, and the degree of
expansion of the plasma being formed, may be per-
formed using the computer codes developed for this
purpose.

The foregoing models were used to perform prelim-
inary calculations of the effect made on aluminum tar-
gets by laser pulses with parameters which it is planned
to obtain in the experimental facility presently under
construction at IHED and in the DESY facility in Ham-
burg. In particular, it has been demonstrated that, when
a target is affected by a laser pulse with parameters cor-
responding to those to be obtained at the facility under
construction at IHED, a highly nonideal nondegenerate
plasma is formed on the target surface, which is of great
interest from the standpoint of investigation of the
plasma properties.

As the experimental base is further developed, it is
planned to compare the models with the results of
future experiments and to refine them in the region of
highly nonideal plasma.
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