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The properties of a laser plasma formed on the sur-
face of an aluminum target subjected to femtosecond
laser pulses with power fluxes 

 

�

 

10

 

14

 

 W/cm

 

2

 

 have been
investigated both experimentally and theoretically.
Such laser pulses produce a thin layer of the nonideal
solid plasma with an electron temperature up to ~10 eV.
In contrast to works [1, 2], particular attention is
focused on the initial stage (in the range 10

 

2

 

–10

 

3

 

 fs) of
the heating and scattering of the plasma under the con-
ditions of the undeveloped hydrodynamic motion of
ions.

The investigations are performed using optical inter-
ferometric microscopy with femtosecond time resolu-
tion, which makes it possible to acquire information on
the dynamics of change not only in the amplitude, but
also in the phase of the reflected wave of probe radia-
tion in the interaction region. Comparison of the
numerical simulation results with the experimental data
obtained makes it possible to determine the coefficients
in the expressions for the effective electron collision
frequency, in contrast to the models discussed in [2–4].
In contrast to the approach proposed in [5], this study is
free of the assumptions that the metal is not melted and
the electron temperature is much lower than the Fermi
energy. This allows us to use the proposed model in a
wide region of the parameters of the nonideal plasma
formed on the target surface.

The source of radiation is a Cr:forsterite laser sys-
tem generating femtosecond pulses at a wavelength of

 

λ

 

1

 

 = 1240 nm [6]. The FWHM of the pulses that is mea-
sured using an autocorrelator of the noncollinear sec-
ond harmonic is equal to 

 

τ

 

L

 

 

 

�

 

 110 fs in this experiment

for the sech

 

2

 

 envelop shape. The time profile of the
pulse is measured in a wide power range using the
third-harmonic correlator. The ratio (contrast) of the
intensity at the pulse maximum to the intensity 1 and
2 ps before the maximum is no less than 10

 

4

 

 and 10

 

6

 

,
respectively [7].

Figure 1 shows the measurement scheme based on a
Michelson interferometer with the transfer of an image
of the surface of the sample under investigation to the
plane of the CCD matrix. Aluminum films ~1 

 

µ

 

m in
thickness deposited on a glass substrate are used in the
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Fig. 1.

 

 Optical measurement scheme: (

 

1

 

) the beam splitter
plate, (

 

2

 

) the probe pulse, (

 

3

 

) the reference mirror, (

 

4

 

) the
microobjectives, (

 

5

 

) the target, (

 

6

 

) the heating pulse, and
(

 

7

 

) the CCD matrix.
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experiments. After each irradiation by the heating
pulse, target is shifted to a new place.

The target is heated by a 

 

p

 

 polarized laser pulse at
the main laser wavelength 

 

λ

 

1

 

 for the angle of incidence
45

 

°

 

. The spatial distribution of the pumping radiation
intensity on the target corresponds to the Gaussian with
a focus beam diameter of about 70 

 

µ

 

m at a level of 

 

e

 

–2

 

.
The probe pulse with varying time delay (the second

harmonic 

 

λ

 

2

 

 = 620 nm) is incident perpendicularly to
the sample surface. The image of the surface of the
sample under investigation is transferred to the CCD
matrix plane by means of a microobjective with a
numerical aperture of 

 

N

 

A

 

 = 0.2. The second reference
arm of the interferometer includes a similar objective
and a dielectric mirror with the wavelength 

 

λ

 

2

 

. The
thermal radiation of the plasma is cut by a narrowband
interferometer light filter. A probe beam (object)
reflected from the sample interferes with the reference
beam and forms an interference ring fringe in the CCD
matrix plane.

A frame detected by the CCD matrix is a spatial
intensity distribution 

 

I

 

(

 

x

 

, 

 

y

 

) = 

 

|

 

E

 

obj

 

|

 

2

 

 + 

 

|

 

E

 

ref

 

|

 

2

 

 +
2Re{

 

E

 

obj

 

} as a result of the interference of the

object 

 

E

 

obj
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1
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)exp[

 

i

 

ϕ
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x
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)] and ref-
erence 

 

E

 

ref

 

(

 

x
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y

 

) = 

 

A

 

2

 

(

 

x
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y

 

)exp[

 

i

 

ϕ

 

2

 

(

 

x
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)] waves, where 

 

A

 

i

 

and 

 

ϕ

 

i

 

 are the amplitudes and phases of interfering
waves, respectively. In this case, the object wave carries
information on the complex reflection coefficient of the
sample, which can be represented in the form (

 

x

 

, 

 

y

 

) =

 

r

 

(

 

x

 

, 

 

y

 

)exp[

 

i

 

Ψ

 

(

 

x

 

, 

 

y

 

)], where 

 

r

 

 and 

 

Ψ

 

 are the absolute
value and phase of the complex reflection coefficient,
respectively.

When processing the interference patterns by the
Fourier transform algorithm [8, 9], laser-induced
changes in 

 

r

 

 and 

 

Ψ

 

 are determined: 

 

r

 

ind
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) =

 

r

 

t
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)/
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i
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i
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x
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y). Here,
ri (Ψi) and rt (Ψt) are the absolute values (phases) of the
complex reflection coefficients of the target before the
action of the heating laser pulse and of the irradiated
target, respectively.

The use of the CCD camera with 1024 × 1024 pixel
matrix with a capacity of 12 bits allows us to perform
measurements with an error of no more than 1% for
change in the absolute value of the reflection coefficient
and an error of ~π/200 for change in the phase at a spa-
tial resolution of ~2 µm.

Figure 2 shows the reconstructed changes rind(x, y)
and Ψind(x, y) in the region of heating by a laser pulse
with I0 � 1.5 × 1014 W/cm2.

Figure 3 shows rind and Ψind as functions of the max-
imum intensity I0 of a heating laser pulse for various
delay times (∆t = 130, 530, and 930 fs) of the probe
pulse with respect to the heating pulse. Each experi-
mental point is a result of averaging over 5–10 mea-
surements.

The theoretical lines in Fig. 3 are obtained by simu-
lating the heating of the target of the intense laser pulse,
as well as the formation and scattering of the plasma,
with the calculation of the amplitude and phase of the
reflected field of the probe pulse at the double fre-
quency.

The self-consistent theoretical model includes the
system of electrodynamic equations for describing the

Eref*

r̃

r̃

(a) (b)

(d)(c)

Fig. 2. Interference patterns of the aluminum target surface
(a) before the action and (b) 530 fs after the action of the
heating pulse and the reconstructed distributions of (c) rind
and (d) Ψind.

Fig. 3. Experimental points and calculated curves for
(a) rind and (b) Ψind vs. the intensity I0 of the heating laser
pulse for delay times ∆t = (� and solid line) 130, (� and
dash–dotted line) 530, and (� and dashed line) 930 fs.
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absorption and reflection of laser radiation, ionization
kinetic equations, and one-fluid hydrodynamic equa-
tions including electron–ion relaxation and electron
heat conduction [10, 11], as well as a new broadband
two-temperature equation of state of the irradiated sub-
stance.

For process times under consideration, t � 1 ps, all
typical sizes of inhomogeneities in the z direction per-
pendicular to the target surface do not exceed 1 µm and
are much smaller than the inhomogeneity sizes along
the target surface, which are determined by the size of
the focusing spot and are equal to tens of microns. For
this reason, to analyze the experimental data, we use the
one-dimensional version of the model developed that
takes into account changes in all quantities only in the
z direction and the single velocity component V of the
quasineutral scattering of the plasma in the z direction
perpendicular to the target surface.

The hydrodynamics equations of continuity for the
volume concentration of heavy particles (atoms and
ions) na and change in the substance momentum for the
velocity V are written in the standard form including
thermal ionization in the model of the average ion
charge Z [10], and the equations for the energies of
electrons ee and heavy particles ei have the form

(1)

(2)

Here, Pe and Pi are the pressures of electrons and heavy
particles, respectively, determined by the equation of
state of the substance; Θ and QZ are the total rate of the
thermal ionization and power density spent on ioniza-
tion, respectively, which are calculated using the model
of the average ion charge, the Lotz formula for impact
ionization, and the detailed balance principle [10, 11];
Qei = γeiZna(Te – Ti) is the electron–ion relaxation
energy density, where Te and Ti are the temperatures of
electrons and heavy particles, respectively, and the
coefficient γei for lattice temperatures Ti � Tmelt (Tmelt is
the melting temperature) is a constant (γei = 4.93 ×
1010 s–1 for aluminum) and, for higher temperatures, is
determined by the plasma formula γei = 3(me/mi)νeff,
where me and mi are the masses of the electron and
heavy particle, respectively, νeff is the effective electron
collision frequency; qT = K 'Te∂zTe is the electron ther-
mal flux, where the coefficient K ' for lattice temperatures
Ti � Tmelt is a constant (K ' = 4.35 × 1036 [erg cm s]–1 for
aluminum) and, for higher temperatures, is determined
by the plasma formula K ' = –128κZZna/3πmeνeff [12]
(the factor κZ � 0.7 presents the effect of electron–elec-
tron collisions on heat conduction); and QIB =
(8π)−1ω1Imε|E |2 is the power density of the inverse
bremsstrahlung absorption of the energy of the heating

Zna ∂t V∂z+[ ]ee ∂zqT– QZ– QIB eeΘ–+=

– Pe∂zV Qei,–

na ∂t V∂z+[ ]ei Pi∂zV– Qei.+=

laser pulse, where E is the electric-field amplitude in
the laser pulse, ε is the dielectric constant, and ω1 is the
heating radiation frequency.

The amplitude of the strength vector of the p polar-
ized electric field of the heating laser pulse is expressed
in terms of the magnetic field strength for which the
time-reduced wave equation [13] is solved numerically.
The complex reflection coefficient of a weak s-polar-
ized probe laser pulse is determined in the linear
approximation. To this end, on the spatially inhomoge-
neous profile of the dielectric constant obtained for var-
ious delay times by solving the dynamic problem for
the target irradiated by the heating laser pulse, the time
reduced wave equation for the single electric field com-
ponent of the probe pulse is solved numerically [13].

The effective collision frequency νeff over the entire
temperature range is determined as the minimum of the
three values: νeff = min{νmet, νpl, νmax}, where νmet is the
effective collision frequency in the metal plasma for Te �

TF = (3π2Zna)2/3�2/(2me), νpl = (4/3) Z2nae4Λ/
is the collision frequency for the weakly nonideal
plasma [14], Λ is the Coulomb logarithm, νmax is the
maximum collision frequency determined by the condi-
tion that the collision mean free path of electrons, λe ~
ve/νeff (ve is the mean electron velocity) is no less than

the mean distance between ions r0 ~  [15]:

(3)

ωpe =  is the electron plasma frequency and
the numerical coefficient k1 � 1 is chosen by fitting the
calculations to the experimental data. Despite the sim-
plicity of such approach to the determination νeff, it
ensures satisfactory accuracy as compared to much
more complicated methods [16].

The effective collision frequency in the metal
plasma νmet is determined as

(4)

(5)

The first and second terms in Eq. (4) present the contri-
butions from the electron–phonon [17] and electron–
electron [18] collisions, respectively. The constant k2 is
chosen by comparing with the experimental data (see
also [5]). The first and second terms in Eq. (5) present
the contributions from the intraband and interband tran-
sitions [17, 19], respectively. The constant C00 is deter-
mined from the data on the static conductivity of metals
[19] (for aluminum C00 � 3.28). The constant C0 is cho-
sen so as to ensure the tabulated reflection coefficient
|r |2 of the metal under consideration at room tempera-
ture. For aluminum |r |2 � 0.96 and 0.91, whereas C0 �
23 and 10, for the heating pulse wavelengths λ1 =
1.24 µm and λ2 = 0.62 µm, respectively. When the lat-

2π meTe
3

na
1/3–

νmax k1ωpe,=

4πne2/me

νmet Ce– phTi/� k2Te
2/�TF,+=

Ce– ph C00 C0 1 min Ti/Tmelt 1,{ }1/2–[ ].+=
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tice temperature Ti exceeds the melting temperature
Tmelt, the band structure of the metal is destroyed and
the contribution from the interband transitions to the
electron–phonon collision frequency vanishes [20].
This circumstance is taken into account by a phenome-
nological dependence on Ti/Tmelt in Eq. (5).

The dielectric constant of the substance is deter-
mined by the Drude formula for the metallic plasma
[19] for Te ≤ T1 = 0.75TF and by the formula for a
weakly nonideal nondegenerate plasma [10, 11, 14] for
Te ≥ T2 = 1.5TF. In the interval T1 < Te < T2, a linear inter-
polation between the Drude formula and plasma for-
mula is used with the above-indicated νpl value. The
optical electron mass in the Drude formula is taken as
mopt = 1.5me [20].

The thermodynamic characteristics of the con-
densed phase of the target substance for both thermal
equilibrium between ions and electrons and nonequilib-
rium heating (when Te > Ti) are determined by using a
new semiempirical equation of state in a wide region of
densities and temperatures. In this equation of state, the
free energy F( , Ti , Te, Z) is represented as the sum of

two terms F = Fi( , Ti) + Fe( , Ti , Z) determining the

contributions of heavy particles and electrons, respec-
tively (ρ = mina is the substance density).

The first term Fi = Fc( ) + Fa( , Ti) includes the

energy of the interaction between heavy particles and
electrons at Ti = Te = 0 (Fc) and contribution from the
thermal motion of heavy particles (Fa). The dependence
of cold energy Fc( ) is determined by the procedure

described in [21], which ensures the equality of the
total pressure in the system to atmospheric pressure at
normal density (for aluminum, 0 = 2.71 g/cm3) and

room temperature, as well as the agreement with the
existing data of the impact experiments and Thomas–
Fermi calculations with quantum and exchange correc-
tions for the high energy densities. The thermal contri-
bution of heavy particles to the free energy is given by
the expression [22]

(6)

where σ = / 0. To determine the dependence of the

typical temperature Θa = Θa( ), we use the interpola-

tion formula [23]

ζρ

ζρ ζρ

ζρ ζρ

ζρ

ζρ

Fa  Ti,( )
3Ti

2mi

--------
Θa

2

Ti
2

------
Taσ2/3

Ti

--------------+
 
 
 

,ln=ζρ
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Θa( ) σ2/3 γ 0a 2/3–( )
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2 Da
2+
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------------------exp=

×
Ba σln
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2 Da σln Da+( )+

---------------------------------------------- 
  ,arctan

ζρ

where γ0a is the Grüneisen coefficient under normal
conditions. The constants Ta, Ba, and Da are determined
from the requirement of the optimal description of the
experimental data on the thermal expansion and impact
compressibility of porous substance samples.

The free energy of the electron gas in the metal is
given by the expression

(7)

Equation (7) for low and high temperatures is an equa-
tion for an ideal degenerate Fermi gas and an ideal Bolt-
zmann gas of free electrons, respectively [24]. Expres-
sions similar to Eq. (7) were previously used in the
equations of state in [23, 25]. The internal energies of
one heavy particle and electron, as well as the total
pressures for heavy particles and electrons, are
expressed in terms of F as ei = mi[Fi – Ti(∂Fi/∂Ti) ] and
ee = miZ–1[Fe – Te(∂Fe/∂Te) , Z], as well as Pi =

2(∂Fi/∂  and Pe = 2(∂Fe/∂ , respectively.

Comparison of the experimental data with the calcu-
lations of the absolute value rind and phase Ψind of the
complex reflection coefficient of the probe pulse (see
Fig. 3) makes it possible to determine (in the frame-
work of this model) the important properties of the non-
ideal solid plasma such as the maximum effective fre-
quency of electron momentum relaxation given by
Eq. (3) and the contribution to the effective electron–
electron collision frequency specified by Eq. (4). The
best agreement with the experimental data for the alu-
minum targets is reached at k1 � 0.3, which is close to
the theoretical estimate [15] and at k2 � 0.85 in Eqs. (3)
and (4) for the effective collision frequencies. In this
case, uncertainty in the choice of the coefficients does
not exceed 15% including the experimental errors.

For the indicated parameters, the proposed model
well reproduces rind and phase Ψind as functions of the
laser pumping pulse intensity I0 for all time delays ∆t
between the pumping pulse and probe pulse in the mea-
surements with I0 � 5 × 1013 W/cm2. For fluxes I0 �
5 × 1013 W/cm2, the model is in agreement with the
experimental data for ∆t < 500 fs, whereas significant
discrepancies exist for rind for ∆t > 500 fs. These dis-
crepancies can be caused by the formation of a two-
component mixture consisting of the low-density
plasma and condensed-phase fragments on the target
surface [26]. A detailed description of this effect is
beyond the scope of the model and is the subject of fur-
ther investigations.

Figure 4 shows the electron and ion temperatures,
the substance density, the effective collision frequency,
and the field strength of the laser probe pulse, as well as

the nonideality parameter Γei = Ze2/( Te) and the

degeneration parameter n  = (8π/3)(TF/Te)3/2, as func-

Fe  Te Z, ,( ) 3Z
2mi

--------Te 1
π2

6
-----

Te

TF
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  .ln–=ζρ
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tions of the target depth for the fixed intensity I0 = 6.7 ×
1013 W/cm2 and the delay time ∆t = 530 fs. Note that the
average ion charge for the parameters under consider-
ation does not change in the calculation time and
remains equal to its initial value Z = 3.

As seen in Fig. 4, the plasma parameters are
strongly inhomogeneous in the skin-layer region,
where the reflected-signal field of the laser probe pulse
is formed. For this reason, despite short durations of the
processes under consideration, the Fresnel formulas
describing the reflection from a homogeneous medium
with a stepwise boundary are inapplicable to the calcu-
lation of the reflection coefficient and its phase.

Analysis of simulation results shown in Fig. 4 indi-
cates that the electron temperature in the plasma
formed on the target surface for the experimental
parameters under consideration is much higher than the
ion temperature and the plasma is in a strongly nonideal
state (nonideality parameter Γei > 1) and is strongly
degenerate in the entire region except for the plasma
corona.

In conclusion, we emphasize that the dependences
of the amplitude and phase of the reflected field of the
short laser probe pulse on its delay time and heating
pulse intensity that are obtained by means of the exper-
imental procedure used in this work make it possible to
acquire important information on the transfer proper-
ties of the strongly nonideal plasma formed under the
action of laser radiation on the target surface in the sub-
picosecond time intervals. It is shown that the plasma
inhomogeneity decisively affects the reflective proper-
ties of the target even in such short times.
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Foundation for Basic Research (project nos. 04-02-
17055 and 06-02-17464) and the Council of the Presi-
dent of the Russian Federation for Support of Young
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