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Abstract
A combined experimental–theoretical method of diagnostics of the plasma created on a
surface of Ag target irradiated by intense femtosecond laser pulses is proposed. The method is
based on semiempirical wide-range models of optical, transport and thermodynamic properties
of Ag plasma. Numerical coefficients in these models are chosen so as to ensure the best
accordance of simulations to measurements of a complex absorption coefficient of Ag plasma
by means of femtosecond interference microscopy. A two-temperature hydrodynamic
modelling of non-stationary laser-produced Ag plasma is carried out; calculated results are
presented in comparison with experiments. Unexpectedly high values of the phase of the
complex reflection coefficient at short (200 fs) time delay between pump and probe laser
pulses are obtained experimentally; possible explanations of this phenomenon are discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In all cases, when a laser pulse with power sufficient for
ionization acts on a metal target, the matter on the target surface
goes through complex modifications from its initial metallic
state to the so-called disordered state [1], further to the states of
degenerate and non-degenerate strongly coupled plasma and
finally (if the laser power is high enough) to the state of weakly
coupled plasma [2]. Though the lifetime of these states can be
different for various parameters of irradiating laser pulses, in
the general case for adequate description of irradiated-target
characteristics and their temporal evolution the wide-range
models of optical, transport and thermodynamic properties
of matter are necessary. The role of modelling is especially
important as the strong inhomogeneity of the produced plasma
and its fast evolution does not permit the direct measurements
of such plasma properties in experiments.

Many publications to date deal with models and
simulations of dense laser-produced plasmas [3–11]. Rather
sophisticated models of effective frequency of electron
collisions [12–20], inverse-bremsstrahlung heating [15–20],
permittivity of plasma [19–21], electron–ion relaxation rate
[14, 22–25], thermal conductivity [7, 13, 24, 26], ionization
equilibrium [27, 28], ionization rate [1, 4] and equation of
state (EOS) [29] are presented in publications. However,
it is difficult to use most of these models because of their
complexity and (or) the restricted range of plasma parameters,
in which the models can be applicable. Most models take into
account some particular mechanisms of physical phenomena,
often omitting other effects that occur in the processes of
laser–matter interaction. The traditional solution of this
problem is to use semiempirical models in order to describe
the behaviour of generated plasma over a wide range of
densities and temperatures [2, 30–33]. Such models provide
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known analytical limits for the metallic state and for the
weakly coupled plasma, while in the intermediate region of
parameters they use interpolation functions with numerical
constants determined from experimental data.

The semiempirical models for effective frequency of
collisions of electrons were constructed and implemented
recently for Au plasma [32]. More advanced semiempirical
models of thermophysical properties over a wide range of
parameters were worked out for Al [33]. The aim of the
present work is to apply similar ideas for the study of Ag
plasma. The main distinction of Ag from Al is that the
ionization processes in the former case can occur at much
lower temperatures (several electron-volts). There are three
electrons (per atom) in the conductivity zone of Al under
normal conditions, while just one electron is initially present
in the conductivity zone of Ag. The necessity to account for
the ionization process requires the introduction of additional
numerical coefficients into semiempirical models. Besides
at the considered wavelength of laser radiation (from 0.4 to
1.5 µm) interband transitions [14, 34] do not contribute to
the absorption coefficient of Ag unlike Al plasma. Moreover,
substantial distinction in the atomic weights A = 27 (Al) and
108 (Ag) should lead to a lower expansion rate of Ag than that
of Al plasma at the equal average ion charges Z in accordance
with the estimate of the velocity of expansion

V ∼
√

ZTe/mi, (1)

where Te is the temperature of electrons and mi is the mass of
ions.

The only experimental method, which could ensure the
diagnostics of a laser produced plasma at the femtosecond
time scale, is the optical method based on measurements of
the reflection coefficient of some weak probe laser pulse from
the plasma produced by an intense pump laser pulse. As in
our previous paper [33], we use the method of femtosecond
interference microscopy, which permits us to measure not only
the module |r|, but also the phase � of complex reflection
coefficient r of the probe pulse from the matter heated by the
pump pulse. Earlier, similar methods of measurement of �

were successfully used in some works [10, 35, 36].
The dependence of the module |r| upon the time delay

between femtosecond pump and probe laser pulses for
Ag plasmas was studied in [37] for moderate pump laser
intensity I ∼ 1013 W cm−2. However, the measurements
of dynamics of � and its dependences on the pump laser
pulse parameters can give additional important information,
which is necessary for testing and determination of numerical
coefficients in proposed wide-range semiempirical models of
optical, transport and thermodynamic properties of matter
under study.

2. Experiment

A source of radiation is a terawatt chromium-doped forsterite
laser system that generates femtosecond pulses at the
wavelength of 1.24 µm and repetition rate 10 Hz [38]. The full-
width at half-maximum (FWHM) pulse duration measured
using a non-collinear second harmonic autocorrelator was

Figure 1. Optical measurement scheme: (1) the beam splitter plate,
(2) the probe pulse, (3) the reference mirror, (4) the micro-
objectives, (5) the target, (6) the pump pulse and (7) the CCD matrix.

100 fs. The shape of the temporal pulse profile was
approximated as sech2. Measurements of the high dynamic
range temporal profile of the pulse were carried out using the
correlator of the third harmonic. The pulse power contrast was
not less than 104 at 1 ps before the pulse peak and more than
106 at 2 ps before the pulse peak [39].

In the present experiments the ultrafast image
interferometry technique with Fourier processing of
interference patterns [40] was used. The scheme of optical
measurements is shown in figure 1.

The p-polarized pump pulses at the fundamental
wavelength λ1 = 1.24 µm were focused on a target using
a 150 mm lens at the angle of incidence 45◦ in air. As was
shown in [36, 41], atmospheric air does not appreciably disturb
the results of such measurements at laser intensities up to
1014 W cm−2. The energy of pump pulses was varied
with the use of a half-wave plate in conjunction with an
optical polarizer. For each laser shot the energy of the pump
was measured by the calibrated photodiode. The spatial
distribution of the pump pulse fluence over the target had the
Gaussian shape with the beam diameter d0 = 70 µm at the
level of exp(−2).

The experiments were performed with Ag films of 5 µm
thickness on silica substrates. The targets were mounted at the
computer-controlled three-axis translation stage. After each
pump shot the target was moved to a new area for irradiation
focusing.

For the experimental study of optical properties of the
excited area of a target the Michelson interferometer was used
(see figure 1). The normally incident s-polarized probe pulse
at the second harmonic wavelength λ2 = 0.62 µm illuminated
the heated area of the target with varying time delay after
the pump pulse. The probe pulse intensity was about 5 ×
1010 W cm−2. The image of the target surface was transferred
to the plane of a charge-coupled device (CCD) camera with the
matrix 1024×1024 pixels and capacity of 12 bit by means of a
micro-objective with the numerical aperture of NA = 0.2. The
second reference arm of the interferometer included a similar
objective and a dielectric mirror. A narrow band filter cut
the thermal radiation of the plasma. The probe beam (object)
reflected from the sample interfered with the reference beam
and formed the interference fringes in the CCD matrix plane.

In the experiments laser-induced changes of amplitude
rind(x, y) = rt (x, y)/ri(x, y) and phase �ind(x, y) =
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�t(x, y) − �i(x, y) of the reflected probe wave from the
excited area of the target were measured. Here ri(x, y) and
�i(x, y) are the amplitude and the phase of the reflected
probe wave from the target surface before the action of the
pump pulse; rt (x, y) and �t(x, y) are the amplitude and
phase after the action of the pump pulse. The algorithm of
2D Fourier processing of interference patterns was described
previously in [40, 42]. The accuracy of measurements of the
amplitude and phase variations was better than 1% and π/200,
correspondingly. The time resolution of the experimental
setup was determined by the duration of the probe pulse (about
100 fs).

The crucial point in time-resolved experiments is the
matching of pump and probe pulses in time. A zero delay
was set when the peaks of the pump and probe laser pulses
overlapped in time at the sample surface. To do this a Si
sample with a fast temporal response of reflectivity was used.
Under the action of the pump pulse with the intensity I ∼
1012 W cm−2 electron–hole plasma formation occurred, which
led to an increase of reflectivity of the Si sample [43].

The variations of rind and �ind as functions of the peak
intensity I1 of a heating laser pulse for various time delays
between the pump and probe pulses are shown in figure 2.
The presented values of rind and �ind were measured in the
centre of the spot. Each experimental point is a result of
averaging over five laser shots.

3. Theoretical model

The ionization, heating and expansion of plasma created
on a solid target surface under the action of a pump laser
pulse is described by the system of hydrodynamic equations
[33, 44, 45] for the density of plasma �a , the average charge of
ions Z, the velocity of quasi-neutral plasma V in the z direction
perpendicular to the target and the energy (per particle) of
electrons ee and heavy particles (atoms, ions, nuclei) ei ,

∂t�a + ∂z(�aV ) = 0, (2)

[∂t + V ∂z]V = −�a
−1∂z(Pe + Pi) + Fp, (3)

na[∂t + V ∂z]e
i = −Pi∂zV + Qei, (4)

Zna[∂t + V ∂z]e
e = −∂zqT − Pe∂zV

− Qei − QZ + QIB − ee�, (5)

[∂t + V ∂z]Z = �, (6)

where Pe and Pi are the pressures of electrons and heavy
particles in accordance with respective EOS; � and QZ are
the full speed of thermal ionization and the density of power
expended for ionization; �a = mina, Z = ne/na,mi is the
heavy particle mass, na is the total concentration of heavy
particles,

na =
zn∑

q=0

nq, (7)

Figure 2. Experimental (markers) and calculated (lines) for Ag (a)
rind, (b) �ind, (c) the temperatures of electrons Te and heavy particles
Ti at z = 0, (d) the position z1 of the point at which the density �a of
the plasma decreases to �0 exp(−1) (where �0 = 10.5 g cm−3 is the
initial solid-state density of Ag) and (e) the average ion charge Z at
z = 0 as functions of the peak intensity I1 of the pump laser pulse
for �t = 0.2 (squares and dashed lines), 0.6 (triangles and dash-dot
lines) and 1 ps (circles and solid lines). Thick and thin lines
correspond to kU = 0.55 and 0.35, respectively.

nq is the concentration of ions with the charge q, zn is the
charge of nucleus and ne is the concentration of electrons
(quasi-neutrality is assumed),

ne =
zn∑

q=1

qnq. (8)
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Fp is the ponderomotive force,

Fp = −K1(ξ
ω)

Zme

4mi

∂z|V E|2, (9)

V E ≡ e|E|(meω1)
−1 is the quiver velocity of electrons under

the laser irradiation with the slowly varying in time amplitude
of the electric field E and the frequency ω1, e and me are the
electron charge and mass, ξω = 3

√
πνeff(4ω)−1, νeff is the

effective collision frequency of electrons, the function

K1(x) = 8

3
√

π

∫ ∞

0

t10 exp(−t2)

t6 + x2
dt (10)

arises due to the integration of the velocity-dependent
cross-section of electron–ion collisions over the Maxwell
distribution function [44]; Qei = γ eiZna(Te − Ti) is the
density of an electron–ion relaxation energy rate, Te and Ti are
the temperatures of electrons and heavy particles, respectively.
The factor γ ei is defined by the formula

γ ei = 3(me/mi)νeff,γ , (11)

where the effective collision frequency of electrons νeff,γ is
determined so as to ensure the handbook value of γ ei(T0) at
the room temperature T0 and to give the proper limit of γ ei

at high temperatures, where νeff,γ = νeff , see below. The
electronic thermal flux is set as

qT = K ′Te∂zTe, (12)

where the factor K ′ is defined by the formula [46],

K ′ = −128κZZna/(3πmeνeff,T ). (13)

The effective collision frequency of electrons νeff,T , which
contributes to a thermal conductivity, is defined so as to
ensure the handbook value of K ′(T0) and to give the proper
limit of K ′ at high temperatures, where νeff,T = νeff , see
below. The multiplier κZ � 0.7 accounts for the influence of
electron–electron collisions on the heat conductivity at high
temperatures

QIB = (8π)−1ω1 Im {ε(ω1)}|E|2 (14)

is the power density of an inverse-bremsstrahlung absorption
rate, ω1 is the frequency of the pump laser pulse, ε(ω1) is the
permittivity of matter1 determined by equations (17)–(20), see
below.

The slowly varying in time amplitude of the electric field
strength E = Exex + Ezez (ex and ez are the unit vectors,
the plane x0z is determined by the wave vector of incident
radiation and the normal to the target surface, i.e. the direction
0z) for the p-polarized pump laser pulse was expressed through
the amplitude of the magnetic field B = Bey as Ex =
−i/(ε(ω1)k1)∂zB,Ez = −B sin(θ)/ε(ω1), k1 = ω1/c, c is
the velocity of light. The wave equation (with proper boundary
conditions) for the laser magnetic field envelope B [48],

∂2
z B + k2

1[ε(ω1) − sin2(θ)]B − ∂z[ln ε(ω1)]∂zB = 0,

∂zB|z=z0 = iε(ω1)k1 cos(θ)[2EL − B]|z=z0 , B|z→∞ = 0,
(15)

was solved numerically. Here EL = √
8πIL/c, IL = IL(t)

is the intensity of the incident laser pulse, θ is the angle

1 The expression (14) is written in the approximation of weak spatial
dispersion of permittivity [47], which is valid at temperatures T < 1 keV.

of incidence (the angle between the direction 0z and the
wave vector of incident radiation, θ = 45◦ for the present
experiments), the point z = z0 � 0 is at the plasma–vacuum
boundary position, and the laser pulse propagates from the left
(before the laser heats up the target z0 = 0, the target is at
z � 0, i.e. at the right half-space).

Note that equations (14) and (15) describe also a
collisionless resonance absorption, but in the discussed range
of the pump laser intensities, I1 � 2×1014 W cm−2, for a high
contrast laser pulse of 100 fs duration the characteristic scale
length of the plasma density does not exceed a few nanometers
and the electron plasma temperature is about 10 eV, see
figures 2(c) and (d), and so laser absorption takes place at
over-critical densities in the normal skin heating regime [49].

The complex reflection coefficient of a weak probe
s-polarized laser pulse with a frequency ω2 at normal incidence
was determined in the linear approximation. For this goal
the wave equation with boundary conditions for the single
component of electric field of the probe laser pulse E =
E(z)ey [48],

∂2
z E + k2

2ε(ω2)E = 0, k2 = ω2/c,

∂zE|z=z0 = ik2[2EL − E]|z=z0 , Ez→∞ = 0,
(16)

was solved numerically on the spatially non-uniform profiles
of the permittivity ε(ω2) for different time delays. Here
EL = EL(t) is the amplitude of the incident probe laser
pulse. For each time delay the permittivity is determined by
equations (17)–(20) (see below) with the help of a numerical
solution of hydrodynamic equations (2)–(6) that describe
the dynamics of a target irradiated by the pump laser pulse
determined self-consistently by equation (15).

It should be noted that in equations (15) and (16) for
subpicosecond laser pulses the transverse (to the normal of
the target, 0z) gradients of the fields and plasma permittivity,
which are determined by the characteristic scale lengths of the
order of 10 µm, can always be omitted in comparison with the
longitudinal gradients, which are determined by the skin-layer
depth of a typical size of the order of 10 nm.

The permittivity of matter ε(ω) for the frequency of
the pump laser pulse ω1 as well as for the probe pulse on
the second harmonic ω2 of the fundamental frequency was
determined in such a way that it describes exactly the well-
known asymptotic behaviour. For metallic plasma at relatively
small temperatures Te 	 T1 � TF the permittivity can be
determined by the Drude-like formula [50, 51],

εmet = ε′
pb + iε′′

pb + 1 − (ne/nc)(me/mopt)(1 + iνeff/ω)−1,

(17)

where nc = meω
2/[4πe2],mopt is the optical mass of

the electron, TF = (3π2Zna)
2/3h̄2/(2me) is the Fermi

temperature. At relatively high temperatures Te 
 T2 � TF

the permittivity can be determined by the expression

εpl = 1 − (ne/nc)[K1(ξ
ω) − i(νeff/ω)K2(ξ

ω)] (18)

for weakly coupled non-degenerate plasma [44, 45, 52], where
the function

K2(x) = 2
∫ ∞

0

t7 exp(−t2)

t6 + x2
dt (19)
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Figure 3. Calculated (lines) and handbook [34] (circles) values of
(a) Re{ε} and (b) Im {ε} as functions of the wavelength of incident
radiation λ for Ag at the room temperature.

contains an integration of the velocity-dependent collision
frequency over the Maxwell distribution function [44]. Finally,
in the present simulations over the whole temperature range,
we defined the permittivity by the approximative formula

ε = εmet +
1

2
(εpl − εmet) tanh

2Te − (T1 + T2)

2(T2 − T1)
, (20)

which gives smooth interpolation in the region T1 � Te �
T2 near the Fermi temperature TF between the Drude-like
permittivity (17) and the plasma permittivity (18). The
coefficients kT 1 � kT 2 ∼ 1, which relate the left and
right boundaries of the interpolation region with the Fermy
temperature, T1 = kT 1TF, T2 = kT 2TF, are the free parameters
of the model.

In (17) the terms ε′
pb and ε′′

pb are formed by the contribution
of interband (parallel band) transitions to conductivity, while
the other terms are stipulated by the Drude or intraband
transitions [14, 51]. For the considered wavelengths and Ag
target, ε′′

pb = 0 [34], while the parameter ε′
pb is nonzero due to

the Kramers–Kronig relation,

ε′
pb(ω) = 2

π

∫ ∞

ωcut

ω′ε′′
pb(ω

′)

ω′2 − ω2
dω′, (21)

where ωcut is the lower limit of a laser frequency, for which
parallel band transitions make contribution to conductivity. In
the case under consideration, ω < ωcut, one can disregard the
dependence of ε′

pb upon ω, so that ε′
pb = const [51].

From (17) with ε′
pb = const, ε′′

pb = 0 and the room-
temperature optical constants of Ag taken from the handbook
[34] (figure 3), one can infer ε′

pb = 2.85,mopt/me = 1.06
and also the below approximation of Ce·ph (25). Note that
the obtained value of the optical mass of electron is in good
agreement with the available estimations mopt/me � 1 for Ag
[53].

When the temperature of the lattice Ti exceeds the melting
boundary Tmelt, the zone structure of metals is destroyed and

the contribution of interband transitions to conductivity also
disappears [34]. This fact is taken into account by putting
mopt = me and ε′

pb = ε′′
pb = 0 for Ti > Tmelt.

The effective collision frequency νeff in the whole
temperature range was defined by the approximative formula,
which gives smooth interpolation between the metal limit
νeff � νmet at relatively low temperatures Te � TF and the
limit νeff � νpl at high temperatures Te 
 TF and which
restricts νeff by some maximal value,

νeff = νmax[1 + (νmax/νmet)
6 + (νmax/νpl)

6]−1/6, (22)

where νmax is the largest possible frequency of collisions,
which is determined by the fact that the mean free path of
electrons between collisions λe ∼ ve/νeff (where ve is the
average speed of electrons) cannot be less than the average
distance between ions r0 ∼ na

−1/3 [2, 54],

νmax = k1ωpe, (23)

ωpe =
√

4πZnae2/me is the electronic plasma frequency, the
numerical factor k1 � 1 is found from a comparison of
the modelling results with the experimental data [33]; νmet

is the effective collision frequency in metal plasma at Te � TF,

νmet = Ce·phTi/h̄ + k2Te
2/(h̄TF). (24)

Two terms in (24) account for the contribution of electron–
phonon [14, 50] and electron–electron [55] collisions,
respectively. The constant k2 is determined by a comparison
of the results of simulations and measurements [32, 33]. The
value Ce·ph = Ce·ph(ω) was determined from the data for
room-temperature optical constants n and k, n + ik = √

ε, of
Ag [34] and the expression for the permittivity of metallic
plasma εmet (17). In accordance with [51], the function
Ce·ph(ω) can be represented as Ce·ph = const1 + const2ω2.
From the comparison of the handbook data [34] and the
calculated values of ε(T0) from (17), illustrated by figure 3,
the value of Ce·ph for Ag in the range of laser-radiation
wavelengths 0.4 � λ � 1.6 µm can be approximated as

Ce·ph = 2.2 + 0.28(ω/1015)2, (25)

where ω is measured in s−1.
The value

νpl = (4/3)
√

2πZ2nae
4�/

√
meTe

3 (26)

is the frequency of collisions for weakly coupled plasma [52],
� is the Coulomb logarithm. Despite simplicity of such
an approach for the definition of νeff , it provides reasonable
accuracy in comparison with much more complex models [18].

The value of νeff,γ in (11) is given by the same formulae
(22)–(24), (26) as for νeff but with the value of Ce·ph = const
determined from the equality γ ei(T0) = 3.84 × 1010 s−1 for
Ag. Similarly, the value of νeff,T in (13) is given by formulae
(22)–(24), (26) with the value of Ce·ph = const determined
from the equality K ′(T0) = 7.28 × 1036 (erg cm s)−1 for Ag
and with the substitution k2,T for k2 in (24), where k2,T is one
more free parameter of the model, which can be determined
from experimental data (see also [32, 33]).

The full speed of thermal ionization � and the density of
power expended for ionization QZ are determined within the

5
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framework of an average ion model as

� = Zna
2�Z(�a, Te, Z)[1 − Z/Zeq(�a, Te)], (27)

QZ = �U(Z) − na∂z(V ∂/∂na[�U(Z) − �U(Zmin)]), (28)

where Zeq is the equilibrium average ion charge, Zmin =
Zeq(�a, 0) is the initial average charge of ions at a given-
density point, Zmin = 1 for Ag under normal conditions. The
first term on the right-hand side of (27) determines the rate
of collisional ionization, while the term proportional to Z/Zeq

accounts for the 3-body recombination via the detailed balance
principle. The total energy of Z-fold ionization of a neutral
atom is defined as

�U(Z) =
∫ Z

0
U(Z′) dZ′, (29)

where U(Z) is the ionization potential of the average ion with
the charge Z,

U(Z) = U[Z]+1�Z + U[Z](1 − �Z), (30)

where [Z] denotes the integer part of Z,�Z = Z− [Z], U0 =
0; Ul with l = 1, . . . , zn are the potentials of l-fold ionization,
which are determined as

Ul(�a) = �l + ��l(�a), (31)

where �l is the tabulated value of the ionization potential for
an isolated (l − 1)-fold ion, ��l accounts for the lowering
of ionization potentials in a dense medium. As far as we
know, there is no reliable enough formula for ��l in the
dense plasma until now [2]. Keeping in mind that according
to [27, 28] the lowering of an ionization potential should
be inversely proportional to the inter-atomic distance, and
that the dense medium should influence more on the outer-
shell electrons than on the inner-shell ones, we can write the
following expression for ��l ,

��l(�a) = −�l[�a/�0]1/3(1 − min{kU lβU , 1}), (32)

where �0 is the normal (solid) density of matter, kU and βU

are the free parameters, which can be determined from the
comparison with the experiment.

Taking into account formula (30) for U, one can obtain
the following expression for �U through (29),

�U = ZU1 + (Z − 1)2(U2 − U1)/2 (33)

at 1 � Z � 2,

�U = U1/2 +
q−1∑
l=1

Ul + (Z − q + 1/2)Uq

+(Z − q)2(Uq+1 − Uq)/2 (34)

at q � Z � q + 1, where q = 2, . . . , zn − 1.
The ionization rate �Z in (27) is determined by the model

derived in [1] as

�Z(�a, Te, Z) = A�ξ(Z)
√

UH/Te[UH/U(Z)]I(�a, Te, Z),

(35)

where A� = 6 × 10−8 cm3 s−1, ξ is the current (non-integer)
number of electrons on the outer non-empty shell of an ion

of average charge Z and UH is the ionization potential of an
isolated atom of hydrogen,

I = 3
√

π

4

εz

εF
3/2

∫ ∞

1

× ln(t)(1 − 1/t)Y (εF)

[1 + exp(εz[1 − t]/2 + εµ)]2[1 + exp(εzt − εµ)]
dt, (36)

where εz = U(Z)/Te, εF = TF/Te, εµ = µ/Te, µ =
µ(�a, Te, Z) is the chemical potential of electrons. The value
of εµ is determined by the equality

εµ = X1/2
(
2ε

3/2
F

/
3
)
, (37)

where X1/2 is the function reverse to the Fermi integral F1/2,

F1/2(x) =
∫ ∞

0
[1 + exp(t − x)]−1t1/2 dt, (38)

so that X1/2(F1/2(x)) ≡ x. The function X1/2 is calculated by
a simple approximative formula derived in [56].

The empirical correction factor (1−1/t)Y in (36) accounts
for the decrease of ionization cross-section in the dense
medium due to the screening and continuum wavefunction
modification effects [1]. This factor should decrease with
the increase of temperature as well as decrease of density
of plasma. This circumstance was accounted by the
approximation

Y (εF) = Y0εF/(1 + εF), (39)

where Y0 is the room temperature value of Y, as it was
introduced in [1]. In the limit εF → 0 the value of integral
(36) tends to I → Ei(εz),

Ei(x) =
∫ x

−∞
t−1 exp(t) dt, (40)

and the formula (35) transforms into the well-known Lotz
expression [57].

The average equilibrium ion charge Zeq was determined
by the chemical model of degenerate plasma [27, 28] and is
given by the solution of the following equation,

Zeq

[
1 +

zn∑
q=1

exp(−�q/Ti)

]
−

zn∑
q=1

q exp(−�q/Ti) = 0,

(41)

where

�q = qµ(�a, Ti, Zeq) +
q∑

l=1

Ul(�a), (42)

the chemical potential µ is calculated from (37), and the
ionization potential Ul is determined in accordance with (31)
and (32). The ion charge Zeq was restricted from below by the
value Zmin = 1.

The EOS in the form of functions ee(�a, Te, Z),

Pe(�e, Te, Z), ei(�a, Ti) and Pi(�a, Ti) described elsewhere
[33] was adapted for Ag and used in the present simulations.
It should be noted that for more precise description of the
process of plasma expansion one should use the multi-phase
EOS [58–60], which is much more complicated than the
one-condensed-phase EOS [33]. To overcome this difficulty
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and take into account the effect of changes of expansivity
properties of matter under phase transitions, the artificial
delay of the beginning of the target–surface movement was
introduced while solving the system of equations (2)–(6) with
the EOS [33]. Namely, the velocity of expansion V was zero
until the temperature Ti on the target surface became higher
than the evaporation temperature Tvap = 0.21 eV of Ag.

4. Comparison of experimental and theoretical
results and discussion

The simulation results as well as the obtained data for the
relative module rind and phase �ind of the reflection coefficient
of the probe laser pulse are shown in figure 2 for different time
delays �t between the pump and probe laser pulses.

The large number of free parameters (k1, k2, k2,T , kU ,

βU , Y0, kT 1 and kT 2) of the model can give someone an
impression that it is always possible to fit any experimental data
by the appropriate choice of these parameters. However, for
physically reasonable values of the parameters of the order of
unity the influence of some of them on the reflection coefficient
rind and the phase �ind of the probe laser pulse is insignificant,
while the influence of others is restricted. The factors which
have the strongest influence on rind and �ind are the expansion
of the plasma, the absorption of the pump and probe laser
radiation and the ionization of matter2. Note that the rate of
expansion of the plasma is governed by the speed of sound,
which is determined by the presently used EOS model.

The rate of laser energy absorption is determined by the
coefficients k1, k2, kT 1 and kT 2 in formulae (23), (24) and
(20). The comparison of experimental results with simulations
performed on the basis of the theoretical model described in
section 3 determines the values k1 � 0.8, k2 � 0.75, kT 1 �
0.4 and kT 2 � 0.7 within about 15% of accuracy. For values of
k1 bigger than stated above, the calculated values of rind at high
pump laser fluxes are lower, while for smaller values of k1 the
resulting values of rind are higher than the experimental ones.
A smaller value of k2 leads to much lower than necessary
values of �ind, whereas a bigger value of k2 tends to much
higher values of rind. The increase of the coefficients kT 1 and
kT 2 leads to the decrease of rind at moderate laser fluxes of
several units of 1013 W cm−2. The value of k2,T has less
influence on rind and �ind than the values of k1, k2, kT 1 and
kT 2. From a comparison with experiments, k2,T � 1 with the
accuracy of about 30%.

The coefficient Y0 influences strongly the rate of thermal
ionization �Z in the dense plasmas, as one can see in figure 4.
Nevertheless, the influence of Y0 on rind and �ind is not
significant. This is connected with the fact that in a dense
plasma, which absorbs the largest part of laser radiation, the
rate of thermal ionization is high enough for the ion charge Z to
be equal to the equilibrium charge Zeq for �t > 10 fs. Only in
the plasma corona the difference of Z and Zeq is considerable,
compare thick and thin lines in figure 5(c). The value of Y0

2 In our previous paper [33] the aluminium plasma was considered, for which
the ionization played no role for moderate (I1 � 1014 W cm−2) pump laser
pulses because three electrons are initially already present in the conduction
band of solid-state Al.

Figure 4. The ionization rate na�Z in Ag plasma at �a = �0 as a
function of the electronic temperature Te. Curves numbered as 1, 2
and 4 correspond to the ionization of 1-, 2- and 4-fold ions,
respectively. The solid lines are calculated from (35) with Y0 = 2.5
and kU = 0.55, the dashed lines—Y0 = 2.5 and kU = 0.35, the
dash-dot lines—Y0 = 0 and kU = 0.55; the dotted lines are obtained
from the Lotz ionization formula [57] with kU = 0.55.

was chosen to be equal to Y0 = 2.5 in accordance with the
affirmation that larger values of Y0 correspond to materials with
higher atomic weights [14]. On the other hand, the influence
of kU on rind and �ind is substantial, as long as this parameter
directly determines the value of Zeq via (31), (32) and (41).
The results of calculations with two values kU = 0.55 and
0.35 are shown in figure 2. The parameter βU was equal
to βU = 0.5 in all cases; rind and �ind are not sensitive
to its variation. The value kU = 0.55 gives the calculated
phases �ind closer to the experimental data at �t = 0.6 ps, but
leads to a too high value of �ind for �t = 1 ps at large fluxes
I1 > 1014 W cm−2. In contrast, the value kU = 0.35 ensures
better agreement with experimental values of �ind for �t =
1 ps, but worse agreement for �t = 0.6 ps.

Note that the sharp increase of the phase �ind for I1 >

1.3 × 1013 W cm−2 is directly related to the beginning of
the plasma expansion. The expansion (without ionization,
in the case of simulation at a constant average ion charge
Z = 1) increases the phase �ind, while the ionization (without
expansion, in the case of simulation at constant density
�a = �0) decreases it. In accordance with equation (1), the
rate of expansion of Ag plasma should be smaller than that
for Al plasma under similar experimental conditions. This is
confirmed by the dynamics of � variation with the delay �t

for �t > 0.2 ps. In the case of Ag plasma, the maximal values
of �ind � 0.7 for �t = 0.6 ps and �ind � 1 for �t = 1 ps
(present work), while for Al plasma the maximal values of
�ind � 0.9 for �t = 0.6 ps and �ind � 1.5 for �t = 1 ps
[33], compare figure 2(b) in this paper and figure 3(b) in [33].
More complicated dependence of �ind upon both I1 and �t for
Ag plasma in comparison with Al plasma is connected with
ionization processes.

It should be stressed that for all physically reasonable
variants of choice of the free parameters of the model for Ag,
the experimental value of the phase �ind at the short time delay
�t = 0.2 ps is several times larger than the calculated one.
From the above analysis, this could serve as an indication
that in the present experiment the expansion of the plasma at
�t = 0.2 ps was considerably larger than follows from the
theory.

7
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Figure 5. The calculated (a) temperatures of electrons Te and heavy
particles Ti , (b) the electronic concentration ne normalized to the
critical concentration nc, (c) the current average ion charge Z (thick
lines) and its equilibrium value Zeq (thin lines) as functions of
coordinate z normal to the irradiated surface of Ag target for the
peak intensity of the pump laser pulse I1 = 7.5 × 1013 W cm−2 at
�t = 0.2 (dashed lines), 0.6 (dash-dot lines) and 1 ps (solid lines),
where kU = 0.55.

From the recent papers [61, 62] it follows that the process
of thermal excitation of d-electrons can affect considerably the
kinetic coefficients of plasmas of noble metals. The account of
the influence of thermal excitation of d-electrons on the optical
properties of plasma created on the surface of an irradiated
target will be the subject of our further theoretical study.
Nevertheless, our preliminary calculations have shown that
the account of d-electrons cannot explain too high values of
�ind at short time delay �t = 0.2 ps.

In principle, phase transitions in the target material can
modify the optical properties of laser-produced plasmas [63]
and thus can lead to a jump in �ind. But such a jump should
be of similar value for all fluxes above some threshold value,
whereas in the experiment �ind strongly increases with I1, see
figure 2(b).

From the above analysis we can conclude that if one
excludes the possibility of some systematic experimental
error, the only explanation for the unexpectedly high �ind at
�t = 0.2 ps could be larger expansion of the reflecting layer
of the created plasma than it follows from our hydrodynamic
analysis.

5. Conclusion

In this paper, the semiempirical models of optical, transport
and thermodynamic properties of Ag plasma created during
the action of a short laser pulse on an Ag target are proposed.
These models include numerical coefficients chosen by a
comparison of simulation results with data on the complex
reflection coefficient of the irradiated Ag target from the
measurements by means of the method of femtosecond
interference microscopy. The advantage of this method is
that it can give information not only on the module but also on
the phase of the complex reflection coefficient depending on
the time delay between the pump and probe pulse.

Unlike Al plasma, in Ag plasma ionization takes place
even at moderate intensities (several units of 1013 W cm−2) of
laser pulses. It was shown that ionization as well as expansion
of the plasma plays an important role in the dynamics of the
reflection coefficient for Ag plasma. Therefore the proposed
models were supplemented also by semiempirical expressions
for the average charge of ions and ionization rate of Ag plasma.

The developed semiempirical models ensure the adequate
description of the module and the phase of the complex
reflection coefficient at all intensities of the pump laser flux
and all time delays studied in the experiment except for the
short (�t ∼ 200 fs) time delays, where unexpectedly high
values of the phases �ind were measured. The origin of such
high values of �ind at short time delays should be the subject
of a further study.
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