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Theory and simulation of short intense laser pulse propagation
in capillary tubes with wall ablation
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The theory and simulations of short intense laser pulses propagating in capillary tubes, whose
properties are changed in time and space under the action of the laser field, are presented. A hybrid
approach has been used in which the dynamics of fields inside the capillary tube is described
analytically, whereas the ionization, heating, and expansion of the plasma created at the inner wall
of the tube under the action of the transverse energy flux are calculated by numerical simulation.
This hybrid method has allowed to determine the behavior of high laser fluxes guided over large
distances. The threshold value for the incident intensity at which plasma creation plays a significant
role has been estimated analytically and confirmed by numerical results. For intensities above the
threshold, the transmission becomes highly sensitive to the energy of the laser pulse, being
minimum at the intensity level for which the electron temperature of the capillary wall slightly
exceeds the Fermi level and the electron collision frequency has a maximum. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2201060�
I. INTRODUCTION

Several applications of ultraintense, short laser pulses,
such as laser plasma accelerators,1 harmonic generation,2,3

and x-ray lasers4,5 require the achievement of high laser in-
tensity over distances much longer than the Rayleigh length.
The use of a capillary tube as a waveguide with inner radius
of the order of the laser pulse waist has been shown6–12 to
meet this requirement. The laser pulse propagation inside a
capillary tube in the absence of wall heating and ablation has
been studied extensively.6,7,9,11

For moderate laser pulse intensities a theory of the non-
linear laser pulse propagation in metallic waveguides was
developed under conditions where the temperature of capil-
lary walls heated by the laser pulse does not exceed the
Fermi temperature, and the processes of ionization and ex-
pansion of the capillary wall, as well as modifications of the
real part of the permittivity and gradients of permittivity of
the plasma, created at the wall, can be neglected.10

The model presented in this paper is aimed at the self-
consistent description of high intensity laser pulse propaga-
tion in a capillary tube, taking full account of ionization,
heating, and expansion of the capillary walls. These pro-
cesses should be considered for the description of the propa-
gation of ultraintense laser pulses �with peak intensity
IL�1016–1020 W/cm2� through thin �inner radius, R0, of the
order of tens of �m� capillary tubes, for which the transverse
energy flux into the capillary tube wall, Sr�R0�, is substantial,

12 2
Sr�R0��10 W/cm , and leads to a significant modification
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of the wall properties. It is shown that the modification of the
wall properties can lead to a significant �up to an order of
magnitude� increase of laser energy losses inside the capil-
lary walls. The characteristics of the resulting plasma, which
will expand inside the tube, is of great importance for
planned experiments on x-ray generation in capillaries for
which this plasma is expected to serve as an active medium.

In Sec. II, the equations describing the propagation of
circularly polarized laser fields inside the capillary tube are
derived. An analytical solution is proposed for the fields in-
side the tube. This approach allows to study the influence of
the capillary walls dynamics on the structure of the electro-
magnetic field and the properties of the plasma created inside
the capillary tube.

A hybrid numerical code has been constructed in which
the fields inside the tube are calculated by the analytical so-
lution of Sec. II, whereas the evolution of the plasma created
at the inner surface of the wall is determined by solving
numerically a system of hydrodynamic equations13 using the
calculated value of the density of the inverse bremsstrahlung
absorption rate. The hydrodynamic equations used to de-
scribe plasma dynamics are presented in Sec. III.

For many practical applications the fields inside the tube
have a simple structure quickly evaluated through the for-
mula of Sec. II. Therefore our hybrid method leads to fast
numerical calculations, allowing to analyze the guiding of
high intensity laser pulses over large distances.
In Sec. IV, the results of simulation for short, intense
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laser pulse propagation in capillaries with parameters achiev-
able with existing laser systems are presented and discussed.
An example is given for aluminum capillary tubes, alumi-
num being a material whose properties are well documented.
The structure of fields in the capillary and the properties of
the plasma created at the inner surface of the capillary wall
are presented for different parameters of laser pulses and
capillary radius.

II. BASIC EQUATIONS

Let us consider a circularly polarized, axis-symmetric
laser pulse propagating along the Oz axis from z�0 and
impinging on a cylindrical capillary entrance at z=0:

E˜ = Re�E exp�− i�0t + ik0z + i���,
�1�

B˜ = Re�B exp�− i�0t + ik0z + i��� ,

where �0 and k0=�0 /c are respectively the frequency and
the wave vector of the laser radiation in vacuum, � is the
azimuthal angle, and E�r ,z , t� and B�r ,z , t� are the complex
amplitudes of the fields, slowly varying on the scales 1 /�0

and 1/k0. In vacuum, just before the capillary tube entrance
at z=−0, the vector structure of the incident fields is de-
scribed by the laser pulse envelope in the radial direction,
F��r�, and time, F��t�:

�E

B
��t,r,�,z = − 0�

= F�t�ei�� i

1
�	− ier + e� + ez

�

�r

F��r� , �2�

where er ,e� and ez are unit vectors; the upper and the lower
rows here and below are for electric and magnetic field com-
ponents, respectively.

Inside the capillary coaligned with the Oz axis, the laser
pulse fields are taken in the form given by Eq. �1� with
complex vector amplitudes

E = erEr + e�E� + ezEz, B = erBr + e�B� + ezBz. �3�

Using dimensionless variables comoving with the laser
pulse,

� = k0�z − ct�, � = k0z, � = k0r , �4�

one can derive �see the Appendix for details� from Maxwell
equations the following system of equations for the axial,
azimuthal, and radial components of the fields �3�:

		� −
1

�2 + 2i
�

��
+ 
 − 1 + 2

�2

�� � �

�Ez

Bz
�

+ i� 
−1�B� − �−1Bz�
− E� + �−1Ez + ��Bz

� ��




= 0, �5�

	
 − 1 + 2i
� 
�E�� = i�− ��Bz� −

1�Ez� , �6�

�� B� 
��Ez � Bz
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�Er

Br
� = �
−1B�

− E�
� −

1

�
�
−1Bz

− Ez
� . �7�

In these equations, 	�=�−1� /��+�2 /��2; 
 is the permittiv-
ity of the plasma, which is assumed to be a scalar function,
depending on the local plasma properties at a given point.

For wide enough capillaries, when the inner radius R0 is
much larger than the laser wavelength �0=2� /k0:

k0R0 1, �8�

and for short laser pulses, the system of Eqs. �5� and �6� can
be simplified substantially when the characteristic length of
plasma expansion during the pulse due to the heating of the
capillary walls, �Rexp, is much smaller than the laser wave-
length:

k0�Rexp� 1, �9�

with �Rexp�Vs�L��ZT /mi�L�10 nm·�L�ps��ZT�eV� /A,
where �L is the laser pulse duration, Z and mi are, respec-
tively, the average charge and mass of plasma ions, T is the
temperature of electrons, and A is the atomic weight; �Rexp

�10 nm for typical parameters such as Z�10, T�102 eV,
�L�10−1 ps, and A=27.

For Eqs. �5�–�7� in the inner vacuum core, with condi-
tions �8� and �9�, the variation of the inner radius of the
capillary due to plasma expansion can be neglected, as well
as the temporal dependence of the expanding plasma bound-
ary RvacR0−�RexpR0. For r�Rvac one can put 
=1 and
rewrite Eqs. �5� and �6� as

		� −
1

�2 + 2i
�

��
+ 2

�2

�� � �

�Ez

Bz
� = 0, �10�

2i
�

��
�E�

B�
� = i�− ��Bz


��Ez
� −

1

�
�Ez

Bz
� . �11�

Field equations inside the capillary walls, for r�Rvac,
can also be simplified. For such a simplification let us con-
sider a region r�R of expanding plasma, with R such that
Rvac�R�R0, where the density of free electrons n�r� is high
enough to ensure the reflection of laser radiation. At the
boundary of this region, r=R, which we call the effective
plasma boundary, the following condition has to be satisfied:

n�R�/nc 1/�k0R0�2, �12�

where nc=m�0
2 / �4�e2� is the critical density. This condition

is equivalent to n�R� /nc �k� /k0�2, where k��1/R0 is the
characteristic transverse wave number of the field propagat-
ing inside the capillary for r�Rvac. In the region r�R only
radial derivatives in Eqs. �5� and �6� are important, hence the
equations for z and � components of the fields have the
following form:

	 �2

2 + 
 − 1
�Ez� −
��
 �
−1��Ez� = 0, �13�
�� Bz 
 − 1 ��Bz
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�E�
B�
� =

i


 − 1
�− ��Bz


��Ez
� , �14�

where 
 depends on �E�2= �Ez�2+ �Er�2+ �E��2 as the properties
of the capillary wall are dependent on the absorbed laser
energy.

The simplified Eqs. �10�, �11�, �13�, and �14� allow to
describe the fields in all the transverse dimensions except in
a thin plasma layer r� �Rvac;R�, where the density can be
smaller than the critical density as imposed by conditions
�12� and �8�. For all the cases considered in this paper,
the width of this thin, rarefied-plasma layer of thickness
�Rrar=R−Rvac, is much less than the skin depth determined
by the density at the boundary r=R, i.e.,

k0�Rrar� �nc/n�R��1/2. �15�

Therefore, the field variations as well as the laser pulse ab-
sorption in this layer can be safely neglected and the condi-
tions of continuity of tangential fields components between
the vacuum core r�Rvac and the plasma region r�R can be
used at r=R:

Ez��=R−0 = Ez��=R+0, Bz��=R−0 = Bz��=R+0,

�16�
E�/Bz��=R−0 = �B, B�/Ez��=R−0 = − �E,

where

�B = − i�B/�1 − 
R, �E = − i
R�E/�1 − 
R,

�17�

�B � �− �� ln Bz

�1 − 

�
�=R+0

, �E � �− �� ln Ez

�1 − 

�
�=R+0

,

and designation �=R�0 stands for the points at the bound-
ary of the vacuum core and of the plasma region, respec-
tively; R�k0R and 
R�
�R+0�; the coefficients �B and �E

are equal to 1 for the case of a step-like plasma profile,
homogeneous for r�R.

As the width of the neglected rarefied plasma layer �Rrar

is smaller by definition than the scale length of plasma ex-
pansion �Rexp, the criterion �15� is less restrictive than con-
dition �9�, which is satisfied in a wide range of intensities for
subpicosecond pulses propagating in wide capillaries under
condition �8�.

So finally we solve Eqs. �10� and �11� for r�R and Eqs.
�13� and �14� for r�R with the boundary conditions �16� and
�17� at the effective plasma boundary, r=R, satisfying con-
ditions �12� and �15�, and being a function of � and �. For the
results presented below the effective boundary position, R,
was defined by the relation n�R� /nc=0.3 and it was checked
that the results do not depend on the particular value of the
ratio n�R� /nc as long as it satisfies conditions �12� and �15�.

Equations �10� and �13� have been solved using the ad-
ditional boundary conditions of nonsingularity of fields at

r→0 and of their asymptotic attenuation at r→�:
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Ez�r → 0� = O�r�, Bz�r → 0� = O�r� , �18�

Ez →
r→�

0, Bz →
r→�

0. �19�

For r�R, an approximate analytical solution of Eqs. �7�,
�10�, and �11� can be found by writing the fields in terms of
quasimodes:

�E

B
� = Amax�

n=1

N

Cn�En���
Bn��� �Xn��,��

�exp	− i�
0

�

k�n
2 ��,��d�/2
 , �20�

where Amax��4�IL /c is the maximum amplitude of the field
and k�n is the dimensionless, transverse wave vector normal-
ized to k0. As will be shown in Sec. IV, only a few modes
contribute significantly to the fields, so that the maximum
number N of modes in Eq. �20� can be restricted to a few
units, and we can assume that k�N�N / �k0R0��1. The coef-
ficients of expansion Cn and Xn�� ,�= +0� are determined by
the boundary conditions at the capillary entrance z= +0,
while boundary conditions �16� and �17� induce a weak de-
pendence of the radial functions En���=ezEz,n+erEr,n

+e�E�,n and Bn���=ezBz,n+erBr,n+e�B�,n on � and �.
The transverse and longitudinal structures of quasimodes

in vacuum are determined at the first order of the small pa-
rameter �k0R0�−1 from the following equations:

�	� − 1/�2 + k�n
2 ��Ez,n

Bz,n
� = 0, �21�

1

k�n
2 	−

1

R�Ez,n/Bz,n

Bz,n/Ez,n
� + i�− �� ln Bz,n

�� ln Ez,n
�


�=R−0

= � �B

− �E
� , �22�

�E�,n

B�,n
� =

− 1

k�n
2 	i���Bz,n

Ez,n
� + �−1�Ez,n

Bz,n
�
 , �23�

��� − �k�n
2 /2��� − i�����Xn = 0. �24�

The fields in the whole space, at the first order of
�k0R0�−1, can then be written as

Ez,n = − i� �J1��� , � �R ,

J1�R�GE��� , � �R �,

J1��� �
un

R
J1�un�/R� , �25�

Bz,n = − �J1��� , � �R ,� ,

J1�R�GB��� , � �R
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E�,n = i� �J0�un�/R��1 + i�−un
2/R� + iJ1�r���+�/R − �−R/�� , � �R ,

− J1�R��1 − 
�−1��GB��� , � �R � ,

B�,n = �J0�un�/R� + iJ1�����+�/R + �−R/�� , � �R ,

− J1�R�
�1 − 
�−1��GE��� , � �R ,
� , �26�
�Er,n

Br,n
� = �
−1B�,n

− E�,n
� , �27�

where un is the n-th root of the zero-order Bessel function J0,
J1 is the first-order Bessel function, and

�± = ��E ± �B�/2. �28�

The functions GB and GE, which describe the field structure
in the plasma region r�R, are the normalized solutions to
Eqs. �13� with boundary conditions

GE�� = R� = GB�� = R� = 1; GE →
r→�

0, GB →
r→�

0. �29�

The eigenvalues of the normalized longitudinal and
transverse wave vectors can be expressed as

kn  1 − k�n
2 /2  1 − un

2/�2R2� + i�+un
2/R3,

�30�
k�n = �un/R��1 − i�+/R� .

Note that for a homogeneous capillary wall with constant 
,
�+=−�i /2��1+
R� /�1−
R. In this case 1/�+ corresponds to
the “effective wave vector” introduced in Ref. 11 and Eqs.
�25� and �26� coincide, after respective transformation of
variables, with the results of Ref. 9.

In Eq. �20�, the coefficients Cn are determined by the
transverse structure of the incident laser pulse �2� at the cap-
illary entrance z= +0 �see also Ref. 12�:

Cn =
2

J1
2�un��0

1

xJ0�unx�F��x�dx, x � �/R . �31�

The time envelope of the incident laser pulse �2� determines
the boundary conditions at z=0 for Eq. �24�:

Xn��,� = + 0� = F��� , �32�

which gives the following approximate solutions:

Xn��,�� = F�� +
1

2
�

0

�

k�n
2 ����d��� , �33�

obtained for laser pulse durations much longer than the laser
period, �0�L1.

In order to determine the dielectric permittivity entering
the field equations, it is necessary to model the dynamics of
the plasma under the action of the energy flux of the laser at
the capillary wall. In the numerical simulations presented in
Sec. IV, two temperature hydrodynamic equations including
ionization dynamics and inverse bremsstrahlung absorption
of laser radiation were used for plasma dynamics.13 The time

evolution of the capillary wall at each distance of the laser
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pulse propagation z was calculated from the initial conditions
of a metal at room temperature with a sharp boundary at
r=R0 and �→�.

The inverse bremsstrahlung absorption rate, which is the
source of heating for the electron component of the created
plasma,13 can be expressed as follows:

QIB = �0
�E�2

8�
Im�
�

=
IL

2k0R2�modes	� �GB/��

1 − 

�2

+ �GE�2

+ � �GE/��

1 − 

�2
Im�
� , �34�

�modes � ��n=1

N
exp�i� kn��,��d��unJ1�un�CnXn��,���2

.

�35�

III. DESCRIPTION OF PLASMA DYNAMICS

The description of ionization, heating, and expansion of
the plasma, created at the capillary walls under the effect of
the transverse energy flux, is based on the system of hydro-
dynamical equations for the total concentration of atoms and
ions na or density of plasma �a=mina, average charge of ions
Z, velocity of quasineutral plasma V in the transverse direc-
tion r, and energy per particle of electrons Ue and ions Ui:

��a

�t
+

���aV�
�r

= 0, �36�

	 �

�t
+ V

�

�r

V = −

1

�a

�

�r
�Pe + Pi�

− K1�3��
4

�eff

�0
� Zm

4mi

� �VE�2

�r
, �37�

na	 �

�t
+ V

�

�r

Ui = − Pi

�

�r
V + Q�e−i�, �38�

Zna	 �

�t
+ V

�

�r

Ue = −

�

�r
qT − Pe

�

�r
V − Q�e−i� − Qrad

e
− QZ + QIB − U � , �39�
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na	 �Z

�t
+ V

�

�r
Z
 =� , �40�

where Pe and Pi are, respectively, electronic and ionic pres-
sure, Z=na

−1�q=1
zn qnq is the average charge of ions,

na=�q=0
zn nq, nq is the concentration of ions with charge q, zn

is the charge of nucleus; � is the total rate of thermal ion-
ization; VE�e �E � / �m�0� is the amplitude of the quiver ve-
locity of electrons in the laser field; �eff is the effective fre-
quency of electron-ion collisions; the function

K1�x� =
8

3���0

� t10e−t2

t6 + x2dt ,

QIB is determined by �34�;

Q�e−i� = 3
m

mi
Zna�eff�T − Ti�

is the density of power, transmitted from electrons to ions
during collisions �electron-ion relaxation�, Ti is the ion tem-
perature;

qT = −
128

3�
�Z

ZnaT

m�eff

�T

�r

is the electronic thermal flux, �Z= �1+4.79/Z−6.02/Z2

+9.13/Z3−4.65/Z4�−1 is a multiplier, which takes into ac-
count the influence of electron-electron collisions on the
thermoconductivity;

Qrad =
4e2

�3 � c

T2

mc2Zna�eff �41�

is the estimate of energy losses due to bremsstrahlung ther-

mal radiation;

eq a n
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QZ = na	 �

�t
+ V

�

�r

EI, EI = �

q=1

zn nq

na
�
k=1

q

Uk, �42�

where QZ is the density of power absorbed due to thermal
ionization �or emitted due to recombination� and EI repre-
sents the energy spent for thermal ionization, Uq is the po-
tential of q-fold ionization.

The system of Eqs. �36�–�40� was solved using a one-
dimensional �1D� Lagrangian code; finite-difference implicit
schemes with Newton iterations were used for solving equa-
tions �36�, �37�, and �39�.

Taking into account only collisional ionization and re-
combination and using the approximation of average ion, one
can write the following expressions for the total speed of
thermal ionization �, the density of power QZ and the energy
spent EI=�Zmin

Z UnI�Z��Z�dZ for thermal ionization:13,14

� = Zna
2��Z��1 − Z/Zeq� ,

�43�

��Z� � 6� 108cm3

s �
n=1

3

Ln�Z��UH

T

UH

Un
e−Un/Tf�Un

T
� ,

Ln�Z� = 2n2Q� zn − Mn−1 − Z

2n2 �,

Un�Z� = �zn − Mn−1 − Ln�Z� + 1�2UH

n2 , �44�

QZ = UnI
�Z�� + na

�V UH �Zmin + 1�2na
�Zmin ,
�r 9 �na
EI =
UH

3 �
1

9
��Z + 1�3 − �Zmin + 1�3� , nI = 3 Û Z� zn − M2,

1

9
��zn − M2 + 1�3 − �Zmin + 1�3�

+
1

4
��Z + 1�3 − �zn − M2 + 1�3� , nI = 2 Û zn − M2� Z� zn − M1,

1

9
��zn − M2 + 1�3 − �Zmin + 1�3�

+
1

4
��zn − M1 + 1�3 − �zn − M2 + 1�3�

+ ��Z + 1�3 − �zn − M1 + 1�3� , nI = 1 Û zn − M1� Z ,

� �45�
where nI=nI�Z� is the number of the shell where ionization
takes place; Zeq=Zeq�na ,T� is the equilibrium average ion
charge at given temperature and density of plasma, deter-
mined according to More’s15 quasistationary formula, Zmin

=Z �n ,T=0� is the minimum average charge of ions; L is
the number of electrons in the shell with principal quantum
number n, Mn is the number of electrons in closed electronic
shells �Mn=0,2 ,10,18, . . . for n=0,1 ,2 ,3 , . . ., respectively�,
Un is the potential of ionization of the shell number n in a
“hydrogen-like” approximation, U is the potential of ioniza-
H
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tion of hydrogen; Q�x� is a function equal to zero for x�0,
to unity for x�1, and to x for x� �0;1�; the function f is
determined as

f�x� � ln	1 +
1 + 2.5x

1.78x�1 + 1.4x�
 .

The formula �45� is written for the case of no more than three
shells in the atom, which corresponds to zn�18.

For the determination of the effective collision frequency
and plasma permittivity, let us note that at high electron tem-
perature ��102 eV for a solid-density plasma� the electron
component of the plasma can be treated in an ideal nonde-
generate gas approximation. In this case the effective fre-
quency of electron-ion collisions can be written as

�eff = 4�2�nZe4�/�3�mT3/2� , �46�

where

� = ln�1 + �3/�D�3�, �D = Ze2/�rDeT�, and

rDe = �T/�4�ne2�

are the Coulomb logarithm for weakly coupled plasma,
Debye parameter of coupling, and the Debye radius, respec-
tively. Under the same approximation the permittivity is


 = 1 −
n

nc
	K1�3��

4

�eff

�0
� − i

�eff

�0
K2�3��

4

�eff

�0
�
 , �47�

where

K2�x� = 2�
0

� t7e−t2

t6 + x2dt .

At low temperatures T�34 eV�na /6 1022 cm−3�
��Z /10�5/6 the mean free path of electrons becomes lower
than the mean distance between ions. Under such conditions
the effective frequency should be restricted to the value13,16

�eff,max = �pe/�6, �48�

where �pe=�4�ne2 /m is the plasma frequency. At lower
temperatures T�TF= �3�2n�2/3�2 / �2m�, where TF is the
Fermi temperature, one can use the following expression for
the effective collision frequency in metallic plasma:17,18

�eff � �0�1 + T2/�TFTi��, �0 � Ti/ � , �49�

where �0 is the electron-phonon collision frequency. For the
intensity range considered here, the contribution of interband
absorption17 was not taken into account; it can have a sig-
nificant contribution in a narrow range close to room tem-
perature.

In numerical calculations the effective frequency was de-
fined as the minimum of the values given by Eqs. �46�, �49�,
and �48�. This approach, though rather elementary, still gives
adequate results when compared to more sophisticated
approaches.13,19

The plasma permittivity at T�TF was determined by the
17
Drude formula:
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 = 1 −
�n/nc�

�1 + i��eff/�0��
, �50�

with �eff determined by Eq. �49�.
In numerical simulations an interpolation between Eqs.

�47� and �50� in the region T�TF was used. The center of
the region of temperatures, where Eqs. �47� and �50� were
connected, was determined by the condition of equivalence
of expressions �49� and �46�.

For ultraintense laser pulses the electromagnetic field
strength can be high even near the capillary wall. The pos-
sible decrease of collision frequency in high-frequency in-
tense electromagnetic fields is taken into account by replac-
ing the value �eff by the value �eff�L, where

�L = 1 − 0.553�1 + �1.08/Z��VTe/VE�2�1 + ��eff/�0�2�3/4�−1

�51�

is the Langdon correction factor,20 VTe��T /m.
The electron energy is interpolated by the expression

Ue � Um
e Up

e/�3 �Um
e �3 + �Up

e�3, where

�52�
Up

e = 3T/2, Um
e = ��2/4�T2/TF,

which gives correct values for degenerate and nondegenerate
cases. For ion energy, and ion and electron pressures, ideal
gas expressions were used. As long as the laser energy is
absorbed mainly by electrons and the electron-ion relaxation
time is much longer than 1 ps, the inaccuracy of those simple
equations of states does not lead to noticeably different re-
sults from those calculated by means of more sophisticated
equations of states.21

IV. SIMULATION RESULTS

The results of simulations presented in this section de-
scribe the propagation of short, intense circularly polarized
laser pulses inside an aluminum capillary tube with inner
radius R0=25 �m. The incident laser pulse �2� is assumed to
be Gaussian in the longitudinal and transverse directions:

F�t� = exp�− 2 ln 2�t/�L�2� , �53�

F��r� = exp�− �r/r0�2� . �54�

For all the examples given below, the laser wavelength is
�0=0.8 �m; the initial pulse duration, full width at half
maximum �FWHM� of the intensity, is �L=35 fs for Figs.
1–3, �L=35 or 350 fs for Fig. 5, and �L=350 fs for Fig. 4.

A. Properties of the fields inside the capillary
tube

Figure 1 illustrates the properties of the laser pulse
propagation along the capillary axis Oz in the case of r0

=16 �m, with a ratio r0 /R0=0.637, which corresponds to the
condition of best matching of the incident Gaussian pulse to
the first eigenmode of the capillary tube, i.e., when the maxi-
mum amount of incident energy �98% � is coupled to the
first mode. The distance z along the capillary axis is normal-

2
ized to the Rayleigh length ZR=k0r0 /2=1 mm. The maxi-
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mum intensity on the laser axis before the entrance into the
capillary is equal to IL=1019 W/cm2 in Figs. 1�a�–1�c� and is
in the range 0−1019 W/cm2 in Fig. 1�d�. The energy of the
laser pulse is E=1.5 J in Figs. 1�a�–1�c� and in the range 0
−1.5 J in Fig. 1�d�. In Fig. 2 are plotted the same quantities
as in Fig. 1 for the case of an unmatched pulse radius. The
radius is reduced by a factor of �2 �r0 /R0=0.450� keeping
the same value for the total energy E=1.5 J; IL=2
�1019 W/cm2.

In Figs. 1�a�, 1�b�, 2�a�, and 2�b� are plotted the longitu-
dinal �and transverse� fluxes; Figs. 1�c� and 2�c� present the
percentage of total energy in the n-th mode Qn. In Figs. 1�d�
and 2�d� is plotted the fraction of laser pulse energy, Qtr,
transmitted to the wall of the capillary for different peak
intensities, IL→0, IL=1017, IL=1018, and IL=1019 W/cm2.

The transverse energy fluxes determine the properties of
the plasma created at the capillary walls. The fluxes I�r=0�
=Sz�r=0� and Sr�r=R�, where I is the electromagnetic field
intensity and Sz and Sr are the z and r components of the
Poynting vector S=c�8��−1 Re�EB*�, are calculated through
the following expressions, derived from Sec. II:

Sr�R� = ILR−2�modes Re��+� , �55�

FIG. 1. Distributions along the capillary length z, normalized to the Ray-
leigh length ZR=1 mm, of �a� the maximum laser energy flux Imax

=max� �Sz�r=0��; �b� the maximum transverse flux into the wall SR,max

=max� �Sr�r=R��; �c� the values �in %� of 100−Q1 �line with markers�, Q2

�solid line�, Q3 �dashed line�, Q5 �dashed-dotted line�, and Q9 �dotted line�,
where Qn ,n=1,2 , . . . is the part of the total energy contained in the n-th
mode; and �d� the part of laser energy �in %� transmitted to the wall. The
maximum intensity is IL=1019 W/cm2 for all lines in �a�–�c� and solid and
dotted lines in �d�; IL→0, IL=1017 W/cm2, and IL=1018 W/cm2 for short
dashed, dashed-dotted, and dashed lines, respectively, in �d�; the dotted line
in �d� stands for the case IL=1019 W/cm2 without expansion �“frozen” ions�.
The laser pulse radius r0=16 �m.
where �modes is given by �35�,
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Sz�0� = IL�modes
z ,

�56�

�modes
z = ��n=1

N
exp�i� kn��,��d��CnXn��,���2

.

We can observe in Figs. 1�a�, 1�b�, 2�a�, and 2�b� oscil-
lations of energy fluxes along the capillary length z, with
maxima of transverse flux corresponding to minima of inten-
sity on the capillary axis. These oscillations are produced by
the interference between the modes entering Eq. �20�. High
order modes are generated either at the entrance of the cap-
illary tube through the diffraction of the incoming pulse, or
inside the tube due to the nonlinearity of the boundary con-
ditions. On the other side, these modes are damped during
propagation by absorption into the capillary walls. The
damping being governed by the imaginary part of the wave
vector kn �Eq. �30�� the highest order modes have the largest
damping coefficient. The curves of Figs. 1�a�, 1�b�, 2�a�, and
2�b� exhibit two domains:

• First, close to the entrance of the tube, at z�3ZR, the
oscillations can have a complicated structure and a high
amplitude because of the relatively high amount of en-
ergy contained in the higher order modes generated by
diffraction, as can be seen in Fig. 1�c�. Diffraction has a
larger contribution in Figs. 1�a� and 1�b� than in Figs.
2�a� and 2�b� because of the larger radius of the focal
spot in the former case, that is why curves in Figs. 1�a�
and 1�b� exhibit the more complicated oscillations with
higher frequencies.

• Second, for z�3ZR, the amplitude of modes with n
�2 drops below 1% and the first two modes dominate

FIG. 2. Same as Fig. 1 for a laser pulse radius r0=11.3 �m �ZR=0.5 mm�
and IL=2�1019 W/cm2.
in the capillary at high z, as can be seen in Fig. 1�c�.
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The relative contribution of each of these modes is
nearly constant because nonlinearities counterbalance a
large part of the damping.

At high z, taking into account only the first two modes, and
neglecting their attenuation and the variation of their enve-
lope due to dispersion, one can obtain from �56� the follow-
ing simple estimate for the position, zmin,n, of the n-th mini-
mum of the longitudinal flux along the capillary length z:

zmin,n

ZR
= �R0

r0
�2 8�

u2
2 − u1

2 �n + 1/2� � 1.018�R0

r0
�2

�n + 1/2� .

�57�

According to �57�, the distance between minima of the inten-
sity on axis is �2.5ZR under the conditions of Fig. 1�a� and
�5ZR under the conditions of Fig. 2�a�, which is very close
to the numerical results.

The total energy of the laser field decreases due to en-
ergy losses into capillary walls, as shown in Fig. 1�d�. The
relative energy loss increases dramatically with increasing
intensity due to the modification of the wall properties, indi-
cating that the propagation of intense laser pulses in thin
capillary wave guides is strongly nonlinear. The comparison
of solid and dotted curves in Fig. 1�d� shows that the process
of hydrodynamic expansion of capillary walls is not very
important for short ��L�100 fs� laser pulses at intensities
IL�1019 W/cm2. Wall ionization and heating are dominant
in this case.

From Fig. 2�a�, we observe that the oscillations are much
deeper than in the case of best matching; that corresponds to
a larger amount of energy contained in the second mode, as
seen in Fig. 2�c�.

The present study was devoted to the case of metallic
capillaries. For dielectric capillaries, it is expected that for
high intensity laser pulses, the physical picture will be simi-
lar due to the transition of the dielectric to a metal and then
to a plasma by the absorption of the laser flux. Nevertheless,
at the front of the laser pulse the medium remains in a di-
electric state, which could lead to higher laser energy losses
than in the case of metallic capillaries, because of the leak-
age of laser field through the transparent walls of a dielectric.
But for the global energy losses, the difference between me-
tallic and dielectric capillaries is not expected to be large for
intense laser pulses, as long as the central part of the pulse,
where the energy losses are the most important, will propa-
gate in both cases under conditions of hot plasma, created at
capillary walls.

B. Properties of the plasma created at the capillary
walls

The front of the laser pulse encounters conditions of
cold, unchanged walls, while the center and the back of the
pulse interact with heated walls. In order to examine the
walls and fields evolution from the front to the tail of the
laser pulse, the transverse energy flux and the quantities
characterizing the properties of the capillary walls are plotted
in Fig. 3 as a function of the local time � for different posi-

tions z along the capillary length �solid curves z /ZR=6.0,
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dashed curves z /ZR=7.2, and dotted curves z /ZR=25� for the
case of best matching and an intensity IL=1019 W/cm2. For
the same pulse energy, but under conditions far from best
matching, the results are qualitatively similar.

Figure 3�a� shows, in accordance with Fig. 1�b�, that the
maximum value of the transverse energy flux decreases for
increasing z. The position of the maximum flux moves with
increasing z to the left from the point �=0 due to dispersion,
and the longitudinal envelop is almost Gaussian in agree-
ment with expression �33�.

From expression �55� it can be seen that the properties of
the capillary wall determine the transverse energy flux into
the wall through the real part of �+ �Eq. �28�� plotted in Fig.
3�b�. The sharp increase of �+ at the front of the laser pulse
is connected with the sharp increase of the electron collision
frequency, shown in Fig. 3�c�, which, in turn, is related to the
increase of electron temperature exhibited in Fig. 3�d�. This
increase in Re��+� from the “cold” value �0.13 up to the
“hot“ value �1–2 is responsible for the increase of energy
losses, in comparison with the case of low-intensity laser
pulses �short-dashed line in Fig. 1�d��. The subsequent slow
evolution of Re��+� is connected mainly with variations of
electron density due to the expansion and ionization of the
material of the capillary wall.

A typical example of the plasma transverse characteris-
tics along the coordinate r, counted from the initial capillary
radius R0=25 �m, is shown in Fig. 4 for the length z=6ZR

FIG. 3. Dependence on the local time �=k0�z−ct� of �a� the transverse
energy flux at the plasma boundary r=R; �b� Re��+�; �c� the ratio of the
effective electron collision frequency to the laser frequency �eff /�0; and �d�
the electron temperature at r=R for z /ZR=6.0 �solid curves�, z /ZR=7.2
�dashed curves�, and z /ZR=25 �dotted curves�. The parameters are the same
as in Fig. 1 for IL=1019 W/cm2.
at a time corresponding to �=−0.5c�L, which is approxi-
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mately the time when the electron temperature reaches a
maximum. The intensity is IL=1019 W/cm2 and the duration
�L=350 fs.

From Fig. 4�a� it is seen that the electron temperature is
much larger than the ion one, especially in the region r
�R0 of expanded plasma. This is due to the fact that the rate
for energy exchange is proportional to the square of the den-
sity. In Fig. 4�c� we observe that for r�R0 the average ion
charge has a much lower value than the equilibrium one,
hence ionization through electron-ion collision will induce a
cooling of the electrons in this region. The width of the
plasma domain, close to r=R and for which n�nc is of the
order of 10 nm��0 �Fig. 4�b��. This small value validates
the assumption made in Sec. II �inequality �15��.

In Fig. 4�e� is reported the distribution of electron pres-
sure in the created plasma. Pressures of tens of Mbar are
generated in the region of dense plasma near the original
boundary of the capillary wall. Such high values of pressure
lead to the formation of shock waves propagating inside the
capillary wall, generating a peak of density at r�R0 ob-
served in Fig. 4�b� and also a peak of positive velocities
�with maximum value �10 km/s� as seen in Fig. 4�f�. The
velocity of plasma expansion grows almost linearly with r

FIG. 4. Space distributions along the transverse coordinate r with origin R0

of �a� the electron temperature T �solid curve� and the ion temperature Tion

�dashed curve�, �b� the electron concentration normalized to the critical one,
n /nc, �c� the average ion charge z �solid curve� and equilibrium average ion
charge �dotted curve�, �d� the electron collision frequency normalized to the
laser frequency �eff /�0, �e� the electron pressure, and �f� the quasineutral
plasma velocity U, at the distance z=6ZR; �=−0.5c�L. IL=1019 W/cm2, �L

=350 fs, and all other parameters are the same as for Fig. 1.
and its characteristic rate is �1 �m/10 ps.
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C. Energy losses in the capillary walls

The relative energy losses Qtr characterize the regime of
propagation in a capillary. For relatively low maximum laser
intensity, IL, or short pulse duration, �L, the transverse flux at
the capillary wall is below the threshold for plasma forma-
tion, the value of Qtr is then entirely determined by the wall
material and does not depend on IL or �L. When the trans-
verse flux becomes larger than the threshold, at higher values
of IL or �L, the situation is changed dramatically as shown in
Fig. 5. In this figure, the energy losses Qtr are plotted after
propagation of laser pulses over the distance z=1 cm in an
aluminum capillary, as functions of the peak intensities IL for
two pulse durations �L=35 and 350 fs. The curve Qtr�IL� ex-
hibits a threshold between cold and hot behaviors, which is
equal to Ith�3.5�1016 W/cm2 for the case of �L=35 fs and
Ith�8�1015 W/cm2 for the case of �L=350 fs. An estimate
for the value of this threshold can be found analytically. For
low intensity and ultrashort ��L�100 fs� laser pulses the
capillary wall is heated in the regime of volume heating, for
which the length of thermal wave propagation is smaller or
comparable to skin depth.10 Taking into account only the
electronic heating through inverse bremsstrahlung absorption
�34� �expansion, ionization, ion heating, and all other pro-
cesses are neglected� and using expressions �50� and �49� for
the calculation of the permittivity of the plasma, we obtain,
after a lengthy calculation, the value of the threshold peak
intensity expressed as

Ith = 1.6

� 1016 W/cm2� k��−1� �L

10 fs
�−1� �0

1 �m
�−4� R0

10 �m
�2

.

�58�

Ith is defined as the intensity at which the absorption coeffi-
cient of the transverse energy flux into a capillary walls,
averaged over the laser pulse duration �L, becomes twice
its value at T=0. In Eq. �58� the coefficient
 =�n=1

3 un
2J1

2�un�Cn
2 is close to 1 for r0 /R0� �0.3;0.55�, while

 �1.2 for the best matching ratio r0 /R0=0.637 and  rises
from 1.2 to 1.66 for r0 /R0� �0.64;0.75�; the value of
k�� ��0 /Ti is close to 3.3 for aluminum.17 The threshold
peak intensity given by �58� is equal to Ith�2
�1016 W/cm2for �L=35 fs. The numerical value deduced
from Fig. 5 is slightly higher �3.5�1016 W/cm2, which is
due to the fact that the thermoconductivity is taken into ac-
count in numerical calculations. In the case of longer pulses
with �L=350 fs the discrepancy between estimated �Ith�2
�1015 W/cm2� and numerically calculated �Ith�8
�1015 W/cm2� values of the threshold is higher, mainly be-
cause of the expansion of the plasma, which is not taken into
account in the analytical estimation, but is significant for
longer pulses even at IL�1016 W/cm2 �compare dashed and
solid marked curves�, and also because of the role of ther-
moconductivity.

The value of Qtr increases with increasing laser intensity
from its “cold” value Qcold�1.6 % to a maximum value
Qtr,max�19% for IL�2�1019 W/cm2 in the case of

17 2
�L=35 fs and Qtr,max�13% for IL�3�10 W/cm in the
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case of �L=350 fs. At still higher values of intensity, Qtr

becomes a decreasing function of IL, which is connected with
i� a strong influence of plasma expansion at the highest val-
ues of IL and �L �compare solid and dashed curves in Fig. 5�
and ii� the decrease of the effective electron-ion collision
frequency with electron temperature T at high electron tem-
peratures, �eff�T−3/2 for T�1.5�102 eV for solid-density
plasma.13 The difference between solid and dashed curves in
Fig. 5 indicates that the expansion of the plasma created at
the wall plays a significant role, if IL�1019 W/cm2 in the
case of ultrashort �35 fs� pulses or if IL�1017 W/cm2 in the
case of longer �350 fs� pulses. For longer pulses the onset of
expansion with increasing peak intensity occurs earlier than
for shorter ones, which explains the fact that the maximum
of the curve Qtr�IL� for �L=350 fs is located at lower inten-
sities, and that the value of this maximum is lower than in
the case of �L=35 fs �compare curves with and without
markers in Fig. 5�. Note that the values of intensities indi-
cated above are given for the capillary radius R0=25 �m and
that they scale as the square of the capillary radius as the
energy flux to the wall is inversely proportional to the square
of the capillary radius �see Eqs. �55� and �58��.

V. CONCLUSION

A model describing the propagation of short intense laser
pulses inside thin capillary waveguides, taking into account
self-consistent ionization, heating, and expansion of capillary
walls under the effect of the transverse energy flux and the
backward influence of the properties of the created plasma
on the evolution of laser fields inside the capillary, has been
formulated. A hybrid electrohydroionization Lagrangian
computer code has been developed to investigate self-
consistently the processes of short intense ionizing laser
pulses propagation in capillaries and plasma formation inside
the capillary.

Using this code, the dynamics of laser fields and plasma
formation inside an aluminum capillary with parameters
close to experimentally achievable ones have been presented.

FIG. 5. Fraction of the laser energy �in %� transmitted to the wall at the
capillary position z=1 cm as a function of the peak laser intensity at the
entrance. The solid line is for the full calculation, and the dashed line for the
case of “frozen” ions. �L=35 �350� fs for lines without �with� markers. All
other parameters are the same as in the case of Fig. 1.
It was found that the conditions of laser pulses propagation
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in metallic capillaries depend substantially on the intensity of
the laser pulse. Particularly, the energy losses for ultraintense
�1019 W/cm2� laser pulses guided in aluminum capillaries
can be an order of magnitude higher than in the case of
low-intensity ��1016 W/cm2� laser pulses for a capillary ra-
dius of R0=25 �m.

The structure of laser fields and the properties of the
created plasma have been studied under the conditions of
best matching �when the energy contained in the first mode
reaches its maximum� and for more tight focusing of the
laser pulse. It was found in the last case that longitudinal and
transverse energy fluxes undergo much deeper oscillations
with z than in the case of best matching. This fact is directly
connected with the larger amount of energy in the second
mode under conditions far from best matching. The case of
best matching leads to the smallest oscillations of the laser
field properties at large z but to more complex and higher
frequency oscillations near the capillary entrance due to dif-
fraction at the capillary walls. A way to reduce diffraction
effects is to minimize the initial field amplitude at the capil-
lary walls, for example by using a diaphragm to achieve a
transverse profile of the laser pulse close to an Airy function,
or by reducing the initial value of r0 /R0 by using the cone-
shaped capillary entrance.8

The model described here represents an effective tool for
the investigation of intense laser fields propagation over
large distances inside capillary wave guides and the determi-
nation of the characteristics of the plasma created at the cap-
illary wall by the transverse energy flux. In particular, the
information about the properties of such a plasma is of im-
portance for experiments, planned by the Laboratoire de
Physique des Gaz et des Plasmas �France� and aimed at the
creation of an active medium inside metallic capillary tubes
for the generation of x-ray sources.
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APPENDIX: DERIVATION OF EQS. „5…–„7…

We start from Maxwell equations for the high frequency
fields

rot E˜ =
1

c

�B˜

�t
, rot B˜ =

1

c

�E˜

�t
+

4�

c
J˜, �A1�

where J˜ is the plasma current.

The amplitude of the high frequency field E˜ is written as

E˜ =Re�Ê exp�−i�0t��, where Ê is the amplitude of the elec-

tric field slowly varying in time, Ê�E exp�ik0z+ i��, and E

is defined by Eq. �1�; similar expressions are defined for the
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slowly varying amplitudes of the magnetic field B̂ and the

current Ĵ. The wave equations for the electric and magnetic
fields obtained from �A1� are then

�2Ê +
�0

2

c2 
Ê + �2i
�0

c2

�

�t
−

1

c2

�2

�t2�Ê = ��div Ê� , �A2�

�2B̂ +
�0

2

c2 
B̂ + �2i
�0

c2

�

�t
−

1

c2

�2

�t2�B̂

= − �� ln 
 � rot B̂� , �A3�

where Ĵ=!Ê, and the plasma permittivity 
=1+ �4�i /�0�!
were used, and the time derivatives of the conductivity ! as
well as of the field amplitudes in the terms containing ! were
omitted. The z components of Eqs. �A2� and �A3� for the
amplitudes slowly varying in time and space can be written,
using the dimensionless variables defined by Eq. �4� and the

equation div�
Ê�=0, in the form

		� +
1

�2 + 2i
�

��
+ 2���

2 −
�2

��2 + 
 − 1
�Ez

Bz
�

= − i� Er

Br +
�

��
Bz � � ln 


��
, �A4�

where the fact that 
 does not depend on � for circularly
polarized light was taken into account and only the main
radial derivatives of 
 were kept.

With the same assumptions, the radial and angular com-
ponents of Eq. �A1� are obtained as

�1 − i
�

��
�Br =

Ez

�
− 	1 − i� �

��
−

�

��
�
E�, �A5�

�1 − i
�

��
�B� = i

�Ez

��
+ 	1 − i� �

��
+

�

��
�
Er, �A6�

�
 − i
�

��
�Er = −

Bz

�
+ 	1 − i� �

��
+

�

��
�
B�, �A7�

�
 − i
�

��
�E� = − i

�Bz

��
− 	1 − i� �

��
−

�

��
�
Br. �A8�

Neglecting small time and longitudinal derivatives for
the radial components of the electric and magnetic field in
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Eqs. �A5�–�A8� gives Eqs. �7�. Neglecting higher order
dispersion ��2 /��2 term� in Eqs. �A4� with Eqs. �7� gives
Eq. �5�.

To get Eqs. �6� for the angular components, only the first
order derivatives in the longitudinal direction are kept; these
terms are important in rarefied plasmas when �
−1 ��1 and
give rise to Eqs. �11�, while in capillary wall all small de-
rivatives in time and longitudinal direction can be neglected
and result in Eqs. �14�.

As can be seen from Eqs. �A5�–�A8�, the small param-
eters that allow to make the simplifications used in this paper
are the small ratios of the laser period and wavelength to the
respective characteristic time and space variations of the la-
ser envelope and produced plasma.
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