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Quantum-statistical properties of two coupled modes of electromagnetic field

S. Yu. Kalmykov and M. E. Veisman*
Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia

~Received 12 August 1996; revised manuscript received 19 August 1997!

Squeezing the quantum fluctuations of the two-mode light due to the nonstationary coupling between the
quadrature componentsq̂1 and q̂2 is examined. Thed- and step-function mode couplings are considered. The
conditions of weak and strong step-function coupling are distinguished, the latter being the condition of the
instability for the classical counterpart of the quantum system under study. Under the conditions of weak
coupling the quadrature squeezing is established in both a two-mode electromagnetic noise in thermal equi-
librium ~the thermal state! and a two-mode correlated coherent state~CCS!. Squeezing in the thermal state is
suppressed at a high temperature. The photon distribution function~PDF! in the thermal state reveals oscilla-
tory behavior for both high and low temperature, the oscillations decrease while the temperature increases. The
PDF in the CCS can be either oscillatory or smooth, whereas the photon statistics is essentially non-Poissonian.
The nonclassical intermode photon-number correlations in the CCS are briefly studied.
@S1050-2947~98!03005-4#

PACS number~s!: 42.50.Dv, 42.50.Lc, 42.50.Ar
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I. INTRODUCTION

Quantum fluctuations of parametric systems were stud
in recent years by a number of investigators@1–6#. It was
established that squeezing@7# the quantum fluctuations of th
electromagnetic field may be achieved in a resonator w
moving boundaries or with a refractive index varying wi
time. The squeezed states of a radiation field were cre
experimentally using various quantum optical systems@7#. A
great deal of attention was paid to nonclassical propertie
distributions of the photon numbers~see Ref.@8#, and refer-
ences therein!. An oscillatory behavior of the distribution
function of photons in the squeezed coherent state o
single-mode system was discovered in Ref.@9#, and it was
suggested that such behavior of the photon distribution m
be regarded as a sign of the nonclassical nature of the
involved. Sub-Poissonian statistics and antibunching of
photons were also studied actively@10#. Just recently, the
schemes for measuring the quantum state of atwo-modeop-
tical field have been proposed@11#. The statistical properties
of the two-mode light were discussed@12–17# since the con-
cept of the two-mode squeezing was proposed in R
@18,19#. An opportunity to create the two-mode squeez
state of light by means of the nonstationary coupling
tween the modes withd-excited frequencies was pointed o
in Ref. @17#. Physically, coupling between the modes of lig
may occur, when the coherent light propagates in the non
ear medium with a refractive index depending on the am
tude of the field@20#. The mode coupling can also appear
physics of superconductivity in the case of a supercond
ing circuit made of two integrating Josephson junctions@17#.

In the present article we examine the quadrature squ
ing and specific features of photon statistics in certain qu
tum states of the pair of coupled modes of radiation w
different constant frequencies. It is presumed that quadra
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componentsq̂1 and q̂2 are coupled over the course of a r
stricted time interval. The observable quantities correspo
ing to different modes become statistically dependent si
the coupling emerges; hence, the quantum states of
coupled modes are correlated@21,22#. We consider below
two coupled modes of the electromagnetic noise in ther
equilibrium ~the thermal state! and a two-mode correlate
coherent state~CCS!.

The basic theoretical approach of this work relies
quantum integrals of the motion@23,24# of the system under
consideration. In Sec. II we introduce those integrals in ter
of the canonical transformation of the quadrature operat
The reciprocal matrix of the canonical transformation d
scribes the semiclassical behavior of the quantu
mechanical averages of the quadrature components of
two-mode light. The symplectic matrix of the transformatio
is found explicitly for bothd- and step-function types o
mode coupling. The conditions of weak and strong st
function coupling are defined so that the strongly coup
classical two-dimensional oscillator~i.e., the counterpart of
the quantum system under study! is unstable.

In Sec. III variances of the quadrature components
calculated. Under the conditions of weak coupling, those
bounded and the phenomenon of quadrature squeezing
curs in both the thermal state and the CCS. In the ther
state, squeezing disappears for the temperature excee
\(v1v2)1/2 ~\ is the Planck constant,v1,2 are the mode fre-
quencies!. The quadrature variances increase with time
ponentially under the conditions of strong coupling, so do
the average number of photons in either mode. In this c
the larger mean number of photons corresponds to the m
with a lower frequency.

In Sec. IV the two-mode photon distribution functio
~PDF! in the thermal state is examined for both low and hi
temperature. The oscillatory behavior of the distributi
function is emphasized, and it is found that the oscillatio
decrease while the temperature increases. The asymmet
the PDF with respect to the photon numbers is associa
3943 © 1998 The American Physical Society
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3944 57S. YU. KALMYKOV AND M. E. VEISMAN
with the difference of the mode frequencies.
In Sec. V we demonstrate the numerical examples of

PDF in the CCS. The distribution function of photons m
be either oscillating or smooth depending on parameter
the state involved. The photon statistics, though, is alw
non-Poissonian due to the nonclassical intermode corr
tions of the numbers of photons.

Section VI contains a summary of the results.

II. INTEGRALS OF MOTION

Two light modes with nonstationary mode coupling a
described by the Hamiltonian of the form

Ĥ~ t !5
1

2
Q̂TBQ̂,

B5S I2 0

0 B2
D , B25S v2 l~ t !

l~ t ! v22D . ~1!

HereafterIN denotesN-dimensional identity matrix, and th
superscriptT means transposition. Time is measured in un
of (v1v2)21/2 so that the unit of energy is\(v1v2)1/2, and
v25v1 /v2 . The column vectorQ̂5(p̂,q̂)T consists of two
pairs of the quadrature componentsp̂ j5 ivd j /2(â j

†2â j )/&

and q̂ j5v2d j /2(â j
†1â j )/& of the photon creationâ j

† and

annihilationâ j operators~j 51,2, d151, d2521!. The sign
† means the Hermitian conjugation, andi denotes the imagi-
nary unit. WhenvÞ1, an introduction of normal variable
by a nonstationary canonical replacement seems poss
However, obtaining the replacement is not more simple t
solving the problem in the original variables.

Statistical properties of the interacting modes are exa
ined below using quantum integrals of the motion~or invari-
ant operators! of the system under consideration. An avera
value of a quantum integral of the motion^Î&5Tr r̂Î ~here-
after r̂ denotes a density operator of a system under stud! is
independent of time. Therefore the invariant operator i
solution to the operator equation

]Î/]t5 i @ Î,Ĥ#. ~2!

The invariant operators, which are quadratic with respec
position and momentum operators, were found for a o
e

of
s
a-

s

le.
n

-

e

a

to
-

dimensional quantum oscillator with a variable frequency
Ref. @25#. The integrals of the motion, which are linear in th
position and momentum operators, were obtained for a o
dimensional quantum oscillator in Refs.@26,27#. The inte-
grals of the motion, which are both linear and quadratic
the position and momentum operators, were obtained fo
nonstationary multidimensional quantum oscillator in R
@28#. According to Refs.@23,24#, where the general theory o
multidimensional quantum systems with time-depend
quadratic Hamiltonians is developed, we introduce the lin
invariant operatorsÎ(t)5(p̂0 ,q̂0)T via a homogeneous ca
nonical transform of the quadrature components:

Î~ t !5L~ t !Q̂. ~3!

The symplectic matrixL(t) obeys the conditionL21

5S2LTS2 to preserve the commutation relations@ Îa ,Îb#

5@Q̂a ,Q̂b#5S2ab
, a,b51, . . . ,4,with the matrixS2 being

the block Pauli matrixS25s2^ I2 ~the symbol^ denotes
the tensor product of the matrices!. According to the Stone–
von Neumann theorem, the quantum integrals of the mo
p̂0 , q̂0 form a complete set@24,26#. The quantum average

^p̂& and ^q̂& develop with time according to the equation

^Q̂&5L21^Q̂& t50 ~4!

@see Eq.~3!, and note that̂Î(t)&5^Q̂& t50#. As is known, the
quantum average values follow classical paths. Hence,
reciprocal matrixL21 describes the evolution of the classic
two-dimensional oscillator in a phase space~p,q! ~herep and
q are the classical canonical momenta and coordinat!.
Equation~2! with the initial condition Î(0)5Q̂ yields the
linear matrix equation

]L/]t5 i LS2B, L~0!5I4 , ~5!

for the matrixL(t) of the canonical transform~3!.
We specify the coupling function so that*2`

1`l(t)dt
5l0,1` and assume, first, thatl(t).0 during a time
interval that is much less than a nominal unit of tim
(v1v2)21/2. As a limiting case, thed-function coupling
l(t)5l0d(t) @d(t) is the Dirac delta function# is introduced.
Then, the solution to Eq.~5! reads
L~ t>10!5S cos~vt ! 2l0v sinS t

v D v sin~vt ! l0 cosS t

v D
2

l0

v
sin~vt ! cosS t

v D l0 cos~vt !
1

v
sinS t

v D
2

1

v
sin~vt ! 0 cos~vt ! 0

0 2v sinS t

v D 0 cosS t

v D
D . ~6!
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57 3945QUANTUM-STATISTICAL PROPERTIES OF TWO . . .
For the noninfinitesimal duration of the mode couplin
Eq. ~5! can be solved numerically for a certainl(t). We
consider Gaussian, triangular, and trapezoidal coupling fu
tions that may exceed unity. Numerical solutions to Eq.~5!
for suchl(t) have a tendency to grow whilel(t).1 ~strong
coupling!. Note that the strongly coupled oscillator has
nonpositive definite potential energy12 qTB2(t)q. To obtain
an appropriate analytic description of the instability, we
troduce the piecewise constant coupling functionl(0,t
<t0)5v0

2, l(t,0,t.t0)50 ~step-function coupling!. The
solution to Eq.~5! reads

L~ t<t0!5T1 ^ J12T2 ^ J2 , ~7!

where the auxiliary matrices

J65
1

a12a2
S a6 1

1 2a7
D ,

T65S cos~V6t ! V6 sin~V6t !

2V6
21 sin~V6t ! cos~V6t ! D

are expressed in terms of the parametersv6
2 5v26v22,

V6
2 5 1

2 @v1
2 6(v2

4 14v0
4)1/2#, a65(V6

2 2v22)/v0
2, a1a2

521. The matrices J6 satisfy the relationsJ6B2

5V6
2 J6 and have the propertiesJ6

2 56J6 , and J1J2

50. The complex numbers6 iV2 and6 iV1 are the char-
acteristic values of the two-dimensional classical oscilla
As the Hamiltonian~1! is independent of time inside th
interval 0,t<t0 , the positive definite potential energy o
the system is the necessary and sufficient condition for
stability of the motion. Under the conditions of strong co
pling, v0.1, the potential energy has a saddle point aq
50 rather than a global minimum, andV2 is the imaginary
number. Therefore the classical system executes the uns
motion till t5t0 . Under the conditions of weak coupling
v0<1, the valuesV6 are both real, the elements of th
matrix L are bounded, and the classical system reveals st
behavior.

The quantum integrals of the motion, which are linear
the ladder operatorsâ j , â j

† , are constructed via a homoge
neous canonical transformation

S b̂

b̂†D 5V~ t !S â

â†D , V5S z h

h* z* D . ~8!

The 434 symplectic matrixV consists of 232 complex
blocks z, h. These blocks are used in Sec. V. The relat
V5K21LK connects the symplectic matricesV and L,
where

K5
1

&

S 2 iEv iEv

Ev
21 Ev

21D , Ev5S v1/2 0

0 v21/2D .

The blocksz, h, which correspond to thed-function cou-
pling, are
,

c-

-

r.

e
-

ble

le

n

z5S eivt i
l0

2
eit /v

i
l0

2
eivt eit /v

D , h5 i
l0

2 S 0 e2 i t /v

e2 ivt 0 D .

The expressions for the blocksz, h obtained for the step-
function coupling are rather cumbersome and are not in
duced here.

III. VARIANCES OF QUADRATURE COMPONENTS

In the present section we calculate the varian
of the quadrature componentsMab5 1

2 ^Q̂aQ̂b1Q̂bQ̂a&
2^Q̂a&^Q̂b&, a,b51, . . . ,4,which form the 434 real sym-
metric dispersion matrix

M5S Mpp Mqp
T

Mqp Mqq
D . ~9!

The variances obey certain restrictions, which are none o
than generalized uncertainty relations@22,23#. Making the
canonical replacement~3! in Eq. ~9! yields the expression

M ~ t !5L21M ~ t50!~L21!T, ~10!

which describes the evolution of the initial dispersion mat
M (t50). We specify an initial state with zero quadratu
correlations that possesses a diagonal dispersion matrix

M ~ t50!5diag~Ep,Eq!,
~11!

Ep5diag~Dp1
,Dp2

!, Eq5diag~Dq1
,Dq2

!.

The quantitiesDpj
and Dqj

are the initial dispersions~or
mean square deviations! of the quadrature components. Th
operators of the quadrature components cease to be sta
cally independent fort.0, and nonzero covariances appe
in the dispersion matrixM (t.0). We introduce the correla
tion coefficients Gqkpj

5Mqkpj
/(Mqkqk

M pj pj
)1/2, k, j 51,2,

which describe the statistical correlation between the qua
ture componentsp̂ j andq̂k . Also, quadrature squeezing ma
appear provided that at least one among the dispers
M pj pj

, Mqjqj
turns out to be smaller than a correspondi

dispersionDpj

coh5vd j /2, Dqj

coh51/(2vd j) in a coherent state

ua j&. ~The coherent stateua j& is the eigenvector of the pho
ton annihilation operatorâ j : â j ua j&5a j ua j&, the eigenval-
ues a j covering the entire complex plane.! We define the
squeezing coefficients asKpj

2 5M pj pj
/Dpj

coh and Kqj

2

5Mqjqj
/Dqj

coh, their classical values being restricted fro

below by unity.
Under the conditions of thed-function mode coupling, the

matrix L(t) of the canonical transformation is given by E
~6!, and the dispersion matrixM (t>10) consists of ele-
ments

M pj pj
5~Dpj

1Dqs
l0

2!cos2~vd j t !1Dqj
v2d j sin2~vd j t !,

~12a!
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M p1p2
5l0(

j 51

2

vd jDqj
sin~vd j t !cos~v2d j t !, ~12b!

Mqjqj
5~Dpj

1Dqs
l0

2!v22d j sin2~vd j t !1Dqj
cos2~vd j t !,

~12c!

Mq1q2
52l0(

j 51

2

vd jDqj
sin~v2d j t !cos~vd j t !, ~12d!

Mqj pj
5

1

2
sin~2vd j t !@v2d j~Dpj

1l0
2Dqs

!2vd jDqj
#,

~12e!

Mqkpj
52l0@Dqk

cos~vdkt !cos~vd j t !

2Dqj
v2d j sin~vdkt !sin~vd j t !#, kÞ j , ~12f!

where s( j )52/j . If both Kpj

2 (t50) and Kqj

2 (t50) are not

less than unity, squeezing is not the case@see Eqs.~12a!,
~12c!#.

Under the conditions of step-function mode coupling, t
symplectic matrixL(t) is determined by Eq.~7!, and Eq.
~10! yields the dispersion matrixM (0<t<t0), which con-
sists of the 232 blocks

Mpp5 (
s56

S sin2~Vst !

Vs
22 Aqs1cos2~Vst !ApsD

2S sin~V1t !sin~V2t !

V1
21V2

21 1j cos~V1t !cos~V2t ! D
3~Bq1Bq

T!, ~13a!

Mqq5 (
s56

S sin2~Vst !

Vs
2 Aps1cos2~Vst !AqsD

2S cos~V1t !cos~V2t !1j
sin~V1t !sin~V2t !

V1V2
D

3~Bq1Bq
T!, ~13b!

Mqp5 (
s56

1

2
sin~2Vst !S Aps

Vs
1

Aqs

Vs
21D

1S sin~V2t !cos~V1t !

V2
21 1j

sin~V1t !cos~V2t !

V1
DBq

1S j
sin~V2t !cos~V1t !

V2
1

sin~V1t !cos~V2t !

V1
21 DBq

T ,

~13c!

with j5(Dp1
2Dp2

)/(Dq1
2Dq2

); the auxiliary 232 matri-

ces areAq(p)65J6Eq(p)J6 , Bq(p)5J1Eq(p)J252Bp(q) .
For v0.1 and uV2u21!t,t0 , the variances~13! reveal
asymptotic behavior
e

Mpp;
1

4
exp~2uV2ut !~ uV2u2Aq21Ap2!,

Mqq;
1

4
exp~2uV2ut !~ uV2u22Ap21Aq2!,

Mqp;
1

4
exp~2uV2ut !~ uV2u21Ap22uV2uAq2!.

Squeezing the quantum fluctuations is impossible under s
conditions. The 232 matrix of the correlation coefficient
Gqkpj

(t<t0) is asymptotically equal to

G;CS 1 21

21 1D ,

C5
Dp1

2uV2u2Dq1
1a1

2 ~Dp2
2uV2u2Dq2

!

Dp1
1uV2u2Dq1

1a1
2 ~Dp2

1uV2u2Dq2
!
.

When the condition of weak coupling is fulfilled, the e
genvalueV2 is a real number, and the values of the quad
ture dispersions are bounded. Then, the two-mode quadra
squeezing can occur. We treat below the thermal state of
coupled modes, which reproduces the temporal evolution
the original state with a density operator

r̂~ t50!5 r̂1r̂2 ,
~14!

r̂ j52 sinh~bvd j /2!exp@2bvd j~ â j
†â j11/2!#,

b21 means the temperature in units\(v1v2)1/2. The initial
quadrature dispersions are

Dpj
5~vd j /2!coth~bvd j /2!, Dqj

5Dpj
/v2d j .

The covariances of the quadrature components in the s
~14! are equal to zero. We setv52 and examine the depen
dence of squeezing on temperatureb21 and coupling fre-
quencyv0 and durationt0 . The contour plot in Fig. 1~a!
showsKp2

2 for b51.2 versusv0 and t0 . Squeezing (Kp2

2

,1) appears near the threshold of strong coupling, i.e.
the neighborhood ofv0'0.95, for t0'5.7 and t0'8. To
find out the temperature effect on squeezing, we calcu
Kp2

2 for v050.92 as a function ofb and t0 @its contour plot

is seen in Fig. 1~b!#. It is clear that the quadrature fluctua
tions grow while the temperature increases, and the squ
ing disappears forb,1. Thus the thermal noise damp
squeezing when the temperature exceeds\(v1v2)1/2. We set
v050.92 and calculateKp2

2 in the time domain 0<t0<3p

up to very low~almost zero! temperature~viz., b2151023!.
For vanishing temperature, the thermal state turns into a
related vacuum state~CVS! u0,t&, which is a common eigen
vector of the formal operatorsb̂1

†b̂1 , b̂2
†b̂2 of the number of

photons:b̂ j
†b̂ j u0,t&50. The dispersion matrix of the CVS i

the same as in the correlated coherent stateua,t&, which is a
common eigenvector of the invariant operatorsb̂(t):
b̂ j ua,t&5a j ua,t&, ua,0&5ua1&ua2&. The squeezing coeffi-
cientKp2

2 in the thermal state decreases monotonically wh
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57 3947QUANTUM-STATISTICAL PROPERTIES OF TWO . . .
the temperature tends to zero, and, therefore, the squee
in the CCS is the case. However, in the given range of
rameters, the minimum value ofKp2

2 is not less than 0.4.

Photon statistics in both the thermal state and the CC
the subject of the foregoing sections. The statistical mome
of the photon distribution function can be expressed in te
of the quadrature means and variances. Note that a
negative integernj is an eigenvalue of the operatorâ j

†â j

5 1
2 (vd j q̂ j

21v2d j p̂ j
221). Hence, for the first-order aver

ages, we get

^nj&5
1

2 S vd j~Mqjqj
1^q̂ j&

2!1
1

vd j
~M pj pj

1^ p̂ j&
2!21D .

~15!

The mean numbers of photons are independent of
quadrature correlation coefficients.~But the width of the
photon distribution does depend on the correlation betw
the quadratures@30#.! For v0.1 anduV2u21!t0 , the aver-
age values~15! are exponentially large:

^n1~ t0!&

;
exp~2uV2ut0!

8v~a12a2!2 S 11
v2

uV2u2D @ uV2u2~a2
2 Dq1

1Dq2
!

1a2
2 Dp1

1Dp2
1@ uV2u~a2^q̂1& t501^q̂2& t50!

1a2^ p̂1& t501^ p̂2& t50#2#,

and

FIG. 1. Contour plot ofKp2

2 (v0 ,t0 ,b) for v52: ~a! b51.2, ~b!

v050.92. Squeezing (Kp2

2 ,1) is seen fort0'5.7 andt0'8 ~a!

nearv050.95, ~b! for b.1.
ing
-

is
ts
s
n-

e

n

^n1~ t0!&;^n2~ t0!&
a2

2 ~v21uV2u2!

11v2uV2u2 . ~16!

Whenv0
2 is very large in comparison withv62, the values

a2
2 and uV2u2 are close to unity andv0

2, respectively. Then
^n1(t0)&/^n2(t0)&;1/v2, and the larger mean photon num
ber corresponds to the lower-frequency mode. In order
examine that asymmetry of the two-mode photon distribut
we setv52 for all the calculations of Sec. IV and Sec. V

IV. PHOTON STATISTICS OF COUPLED MODES
IN THERMAL EQUILIBRIUM

The two-mode photon distribution function is the pro
ability to haven1 photons in the first mode andn2 photons in
the second mode. The desired probability is a diagonal
mentF(n,t)5^nur̂un& of the density operator of the syste
under consideration;un&5un1&un2&, whereunj& is an eigen-
vector of the operatorâ j

†â j : â j
†â j unj&5nj unj&. According to

Ref. @30#, the PDF in the thermal state is expressed in ter
of a ‘‘diagonal’’ Hermite polynomial@29# of four variables:

F~n,t !5FdetS M1
1

2
I4D G2 1/2Hnn

$R%~0!

n!
, ~17!

wheren! 5n1!n2!, andn denotes a pair of non-negative in
tegers. The matrixR5U†(I422M )(I412M )21U* is de-
fined in terms of a unitary matrix

U5S 2 i I2 i I2

I2 I2
D

satisfying the relationsU†U5UTU* 5I4 , U†U* 5UTU
5S1 ; S15s1^ I2 is the four-dimensional block Pauli ma
trix.

The examples of the distribution~17! presented below are
obtained numerically using the known recurrence relation
Hermite polynomials ofN variables~N54 in our case!

Hn1 , . . . ,nj 11, . . . ,nN

$R% ~y!5S (
k51

N

RjkykDHn1 , . . . ,nj , . . . ,nN

$R% ~y!

2 (
k51

N

RjknkHn1 , . . . ,nk21, . . . ,nN

$R% ~y!,

H0
$R%51, H0, . . ., 1j , . . . ,0

$R% ~y!5 (
k51

N

Rjkyk .

The photon distribution functions displayed in Fig. 2 are c
culated in the regimes of both strong step-function coupli
v051.3, t053p/4 @Figs. 2~a! and 2~b!#, andd-function cou-
pling, l054 @Figs. 2~c! and 2~d!#. We analyze the behavio
of the PDFs at different values of the parameterb. We
present the plots of the photon distributions for very lo
temperature,b2151023 @Figs. 2~a! and 2~c!# and for larger
temperature,b2151.25 @Figs. 2~b! and 2~d!#. As is pointed
out in Sec. III, the thermal state at low temperature is close
the CVS having the PDF vanishing for odd sumsn11n2
@14,30#, and the behavior of the PDFs depicted in Figs. 2~a!
and 2~c! shows that those almost vanish for odd sumsn1
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3948 57S. YU. KALMYKOV AND M. E. VEISMAN
1n2 . The distribution functions in Fig. 2 exhibit an oscilla
tory behavior, which is less pronounced for higher tempe
ture. The suppression of the oscillations is demonstrate
Fig. 3, where the cutF(0,n2) is plotted as a function ofb for
l054. The probability to have (0,n2) photons at high tem-
perature decreases proportionally tob. This is reminiscent of
the photon statistics of the squeezed correlated mixed sta
a single-mode system@31#.

One should note the essential difference of plots in F
2~a! and 2~b! from Figs. 2~c! and 2~d!. The distributions of
photons in the strongly coupled modes have a pronoun
asymmetric character, the maxima of the distributions be
concentrated along then2 axis, which corresponds to th
lower-frequency mode@Eq. ~16! gives ^n1(t0)&/^n2(t0)&
'1/4#. The excitation of the relatively large photon numbe
in the ‘‘red’’ mode occurs exclusively under the conditio

FIG. 2. Photon distribution functionF(n1 ,n2) in the thermal
state forv52: ~a!, ~b! v051.3, t053p/4 ~strong step-function
coupling!, and ~c!, ~d! l054 ~the d-function coupling!. In ~a! and
~c! b2151023, in ~b! and~d! b2151.25. Figure showsF(n1 ,n2)
in units 1021.

FIG. 3. The cutF(0,n2) for l054 as a function ofb. The
probability of counting (0,n2) photons decreases proportional
to b.
-
in

of

s.

ed
g

of strong coupling, and this anomaly of photon statistics
not observed under thed-function coupling conditions, as is
clear in Figs. 2~c! and 2~d!. We describe the features of th
PDFs in Figs. 2~c! and 2~d! using the deformed Planck dis
tribution formula obtained from Eq.~15!,

^nj~ t>10!&5n̄ j1S l0

2 D 2

cothS b

2vd j D , ~18!

wheren̄ j5@exp(bvdj)21#21 is the usual Planck distribution
formula corresponding to the initial state~14!. When the
temperature tends to zero (b→`), andl0;O(1), one has
^nj (t>10)&;(l0/2)2. This is the case for the parameters
Fig. 2~c! displaying the PDF symmetric with respect to th
main diagonal n15n2 . For larger temperature, say,b
;O(1), the symmetry of the distribution is broken, as
seen in Fig. 2~d!. @The deformed Planck formula~18! gives
^n1&'2.5̂ n2&.# Therefore, unlike the strong step-functio
mode coupling, thed-function coupling excites the large
number of photons in the higher-frequency mode. To exa
ine this tendency, we proceed to higher temperatures,b !1,
and retainv of the order of unity. Then, Eq.~18! yields

^nj~ t>10!&;
v2d j

b S 11
v2d jl0

2

2 D @1. ~19!

Whenl0@1, the ratio of the mean numbers~19! becomes

^n1~ t>10!&

^n2~ t>10!&
;v2F12

2

l0
2 S v22

1

v2D G ,
which, for l05`, is nothing but the inverse of the rati
^n1&/^n2&51/v2 corresponding to the unperturbed initi
state~14!.

V. PHOTON STATISTICS OF CORRELATED COHERENT
STATE OF COUPLED MODES

In the present section the distribution of the numbers
photons in the CCSua,t& ~see Sec. III! is investigated. The
two-mode PDF, which follows from a generic polymode e
pression@23,30#, reads

F~n,t !5
F~0,t !

n!
uHn

$z21h%~h21a!u2,
~20!

F~0,t !5
exp~2uau2!

udet zu UexpS 1

2
aTh* z21aD U2

,

wherea5(a1 ,a2)T denotes a two-dimensional column ve
tor with complex entriesa j5ua j ueiu j , and n is a discrete
vector variable; the 232 complex matricesz andh are the
blocks of the symplectic matrixV @see Eq.~8!#. At the initial
time t50, the PDF~20! is a usual two-dimensional Poisso
nian distribution with both means and dispersions of the p
ton numbers equal toua j u2. For t.0, the phasesu j become
additional parameters, on which the distribution of the ph
ton numbers depends. The PDF~20! can be expanded into
finite sum of classical~single-variable! Hermite polynomials
@32#, and it can be shown that under the conditions ofd-
function mode coupling the distribution~20! is not depen-
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dent onv. Thus the effect of the phasesu j is the most clear
under the conditions ofd-function mode coupling.

We consider below the distributions~20! computed for
a15252 ia2 . The plot in Fig. 4~a! corresponds to the con
ditions ofd-function mode coupling,l054. The PDF in Fig.
4~a! undergoes strong oscillations and has a pronoun
asymmetric character. Fort>10, the mean numbers of pho
tons are

FIG. 4. Photon distribution functionF(n1 ,n2) in the correlated
coherent state:~a! l054 ~d-function coupling!, ~b! v051.3, t0

53p/4 ~strong step-function coupling!. In ~c!, we assume the sam
parameters as in~b!, except thatv050.9 ~weak coupling! instead of
v051.3. Figure showsF(n1 ,n2) in units 1022, and the values of
parameters arev52, a152, a252i .
d

^nj&5S l0

2 D 2

1~ Im a j2l0 Re as!
21Re2 a j , ~21!

where s( j )52/j , Reaj is the real part, and Imaj is the
imaginary part ofa j . For the parameters of Fig. 4~a!, Eq.
~21! gives^n1&/^n2&52/11. Forl0@1, the ratio of the mean
numbers is governed by the real parts ofa’s,

^n1~ t>10!&

^n2~ t>10!&
;

114 Re2 a2

114 Re2 a1
F11

8

l0
S Im a2 Re a1

114 Re2 a1

2
Im a1 Re a2

114 Re2 a2
D G ,

and the larger mean number of photons corresponds to
mode with the imaginarya j . Also, we calculate the PDF
under the conditions of strong,v051.3 @Fig. 4~b!#, and
weak,v050.9 @Fig. 4~c!#, step-function coupling;t0 53p/4
is chosen. Figure 4~b! shows the distortion of the PDF at low
n1 and n2 . Unlike that, the distribution in Fig. 4~c! is a
smooth function. Both the distributions are not symmet
with respect to the main diagonaln15n2 . Excitation of the
large photon numbers occurs under the conditions of str
coupling, and Eq.~16! gives the ratio of the mean numbe
^n1(t0)&/^n2(t0)&'1/4.

The coupling of the modes causes the intermode corr
tions of the photon numbers. To study them, we employ
Glauber coherence function

FIG. 5. The Glauber coherence functionG12
(2) in a correlated

coherent state witha152, a25a1eiu for v52. In ~a!, the contour
plot of G12

(2) versusv0 and u is shown for fixedt053p/2. The
nonclassical behavior is seen forv0'1 andu'1.7p. In ~b!, G12

(2)

is shown as a function oft0 for fixed v051.2 andu51.6p.
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G12
~2!511

^n1~ t0!n2~ t0!&2^n1~ t0!&^n2~ t0!&

^n1~ t0!&^n2~ t0!&
.

Motivation for this definition can be found in Ref.@33#. The
classical values of the Glauber function are restricted fr
below by unity. We calculateG12

(2) for a152, and a2

5a1eiu. The contour plot of the Glauber function versusv0
andu for fixed t053p/2 is seen in Fig. 5~a!. The nonclassi-
cal valuesG12

(2),1 are seen near the threshold of strong c
pling (v0'1) in the neighborhood ofu53p/2. We take the
valuesu51.6p andv051.2 corresponding to the minimum
value ofG12

(2) in Fig. 5~a!, and calculate the coherence fun
tion for various times@see Fig. 5~b!#. Figure 5~b! demon-
strates that both classical and nonclassical values can
achieved byG12

(2) for fixed v0 and u in the course of the
evolution of the system.

VI. CONCLUSION

We have discussed how the nonstationary mode coup
affects the quantum-statistical properties of the two-mo
light. The effect of bothd- and step-function coupling be
tween the quadrature componentsq̂1 and q̂2 of the light
modes is investigated in detail. The conditions of weak a
strong step-function coupling are distinguished. The exc
r

na

O

rd

un
-

be

g
e

d
-

tion of the quantum fluctuations in the strongly coupl
modes is attributed to the instability of the classical tw
dimensional strongly coupled oscillator, which is the clas
cal counterpart of the quantum system under considerat
Also, the exponentially large mean number of photons c
responds to either of the strongly coupled modes, and
mode with a lower frequency possesses the greater m
number. On the contrary, the quadrature squeezing is es
lished in the thermal state under the conditions of weak c
pling for moderate temperature; the squeezing disapp
when the temperature is of order or exceeds\(v1v2)1/2. The
two-mode PDF in the thermal state reveals oscillatio
which decrease while the temperature grows. It is found t
the PDF in the CCS of the coupled modes exhibits b
oscillating and nonoscillating behavior depending on
concrete values of parameters. The nonclassical interm
correlations of the photon numbers are detected and br
studied.
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