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Quantum-statistical properties of two coupled modes of electromagnetic field
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Squeezing the quantum fluctuations of the two-mode light due to the nonstationary coupling between the
quadrature componenﬁs_ anddz is examined. Thes- and step-function mode couplings are considered. The
conditions of weak and strong step-function coupling are distinguished, the latter being the condition of the
instability for the classical counterpart of the quantum system under study. Under the conditions of weak
coupling the quadrature squeezing is established in both a two-mode electromagnetic noise in thermal equi-
librium (the thermal stajeand a two-mode correlated coherent s{@€S. Squeezing in the thermal state is
suppressed at a high temperature. The photon distribution fun@ioR) in the thermal state reveals oscilla-
tory behavior for both high and low temperature, the oscillations decrease while the temperature increases. The
PDF in the CCS can be either oscillatory or smooth, whereas the photon statistics is essentially non-Poissonian.
The nonclassical intermode photon-number correlations in the CCS are briefly studied.
[S1050-294{@8)03005-4

PACS numbd(s): 42.50.Dv, 42.50.Lc, 42.50.Ar

. INTRODUCTION componentsy; andq, are coupled over the course of a re-
stricted time interval. The observable quantities correspond-
Quantum fluctuations of parametric systems were studiethg to different modes become statistically dependent since
in recent years by a number of investigatpts-6]. It was  the coupling emerges; hence, the quantum states of the
established that Squeezi[@ the quantum fluctuations of the coupled modes are Corre|atéﬁ1,22_ We consider below
electromagnetic field may be achieved in a resonator withwo coupled modes of the electromagnetic noise in thermal
moving boundaries or with a refractive index varying with equilibrium (the thermal stateand a two-mode correlated
time. The squeezed states of a radiation field were createghherent statéCCS.
experimentally using various quantum optical syst¢#jsA The basic theoretical approach of this work relies on
great deal of attention was paid to nonclassical properties Qjuantum integrals of the motidi23,24 of the system under
distributions of the photon numbefsee Ref[8], and refer-  consideration. In Sec. Il we introduce those integrals in terms
ences therein An oscillatory behavior of the distribution of the canonical transformation of the quadrature operators.
function of photons in the squeezed coherent state of ghe reciprocal matrix of the canonical transformation de-
single-mode system was discovered in R8f, and it was  scribes the semiclassical behavior of the quantum-
suggested that such behavior of the photon distribution mayhechanical averages of the quadrature components of the
be regarded as a sign of the nonclassical nature of the staggo-mode light. The symplectic matrix of the transformation
involved. Sub-Poissonian statistics and antibunching of th¢s found explicitly for both & and step-function types of
photons were also studied activel§0]. Just recently, the mode coupling. The conditions of weak and strong step-
schemes for measuring the quantum state mf@modeop-  function coupling are defined so that the strongly coupled
tical field have been propos¢til]. The statistical properties classical two-dimensional oscillatdi.e., the counterpart of
of the two-mode light were discussgt2—17 since the con- the quantum system under stidy unstable.
cept of the two-mode squeezing was proposed in Refs. |n Sec. IIl variances of the quadrature components are
[18,19. An opportunity to create the two-mode squeezedcalculated. Under the conditions of weak coupling, those are
state of light by means of the nonstationary coupling be-bounded and the phenomenon of quadrature squeezing oc-
tween the modes witi-excited frequencies was pointed out curs in both the thermal state and the CCS. In the thermal
in Ref.[17]. Physically, coupling between the modes of light state, squeezing disappears for the temperature exceeding
may occur, when the coherent light propagates in the nonlink (w;w,)*? (4 is the Planck constant, , are the mode fre-
ear medium with a refractive index depending on the ampliquencies The quadrature variances increase with time ex-
tude of the field20]. The mode coupling can also appear in ponentially under the conditions of strong coupling, so does
physics of superconductivity in the case of a superconductthe average number of photons in either mode. In this case,
ing circuit made of two integrating Josephson junctifhg. the larger mean number of photons corresponds to the mode
In the present article we examine the quadrature squeexvith a lower frequency.
ing and specific features of photon statistics in certain quan- In Sec. IV the two-mode photon distribution function
tum states of the pair of coupled modes of radiation with(PDF in the thermal state is examined for both low and high
different constant frequencies. It is presumed that quadratut@mperature. The oscillatory behavior of the distribution
function is emphasized, and it is found that the oscillations
decrease while the temperature increases. The asymmetry of
*Electronic mail: bme@hedric.msk.su the PDF with respect to the photon numbers is associated
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with the difference of the mode frequencies. dimensional quantum oscillator with a variable frequency in
In Sec. V we demonstrate the numerical examples of th&ef.[25]. The integrals of the motion, which are linear in the

PDF in the CCS. The distribution function of photons mayposition and momentum operators, were obtained for a one-

be either oscillating or smooth depending on parameters alimensional quantum oscillator in Refi6,27. The inte-

the state involved. The photon statistics, though, is alwaygrals of the motion, which are both linear and quadratic in

non-Poissonian due to the nonclassical intermode correlahe position and momentum operators, were obtained for a

tions of the numbers of photons. nonstationary multidimensional quantum oscillator in Ref.
Section VI contains a summary of the results. [28]. According to Refs[23,24], where the general theory of
multidimensional quantum systems with time-dependent
II. INTEGRALS OF MOTION gquadratic Hamiltonians is developed, we introduce the linear

invariant operators?(t)=(ﬁo,f10)T via a homogeneous ca-

Two light modes with nonstationary mode coupling are . Jnical transform of the quadrature components:

described by the Hamiltonian of the form

N I =AM1Q. €)
An=5 Q8G,

The symplectic matrixA(t) obeys the conditionA ™!

I, 0 NG =3,AT3, to preserve the commutation relatiofis, ,Z;]

=( 0 Bz)' 2:(7\(0 w2>' N =[Qa,Qu]=32,,, a,b=1,...,4,with the matrix3, being

the block Pauli matrix&,=o0,®1, (the symbol® denotes
Hereafterly denotesN-dimensional identity matrix, and the the tensor product of the matrigeg\ccording to the Stone—
superscripl means transposition. Time is measured in unitsvon Neumann theorem, the quantum integrals of the motion
of (wyw,) % s0 that the unit of energy #(wiw,)"% and 5, g, form a complete sef24,26. The quantum averages
2_ A— (N A H ~ ~ . . . .
w“=w1/w;,. The column vectoQ—{p,q)T consists of tWo () and(q) develop with time according to the equation
pairs of the quadrature componern;,:iw‘si’z(aj*—aj)/\/i
and g;= o~ %"¥(al +a;)/v2 of the photon creatiora] and (Q=A"XQ)=o (4)
annihilationéj operatoryj=1,2, 6,=1, §,=—1). The sign . . _
t means the Hermitian conjugation, andenotes the imagi- [see Eq(3), and note thatZ(t))=(Q):~o]- As is known, the
nary unit. Wheno#1, an introduction of normal variables quantum avergge_\{alues follow classical paths. Hence, the
by a nonstationary canonical replacement seems possiblEgciprocal matrixA~ = describes the evolution of the classical
However, obtaining the replacement is not more simple tha#wo-dimensional oscillator in a phase spapg@) (herep and
solving the problem in the original variables. g are the classical canonical momenta and coordinates
Statistical properties of the interacting modes are examEquation(2) with the initial conditionZ(0)=Q yields the
ined below using quantum integrals of the motion invari-  linear matrix equation
ant operatornsof the system under consideration. An average
value of a quantum integral of the moti¢#)=Tr pZ (here- IAIJt=1AZ;B, A(0)=ly,, ©)

after p denotes a density operator of a system under $tisdy

independent of time. Therefore the invariant operator is a{or the matrixA(t) of the canonical transforr(8).

solution to the operator equation We specify the coupling function so that’ A (t)dt
=\o<+o and assume, first, that(t)>0 during a time
aTlat=i[Z,H]. ) interval that is much less than a nominal unit of time

(wiw,) Y2 As a limiting case, thes-function coupling
The invariant operators, which are quadratic with respect ta.(t) =\45(t) [5(t) is the Dirac delta functiohis introduced.
position and momentum operators, were found for a oneThen, the solution to Eq5) reads

cog wt) — Ao sin(i) o sifwt) N coz<£>
w w
_o sin(wt) cos( i) Ao coq wt) 1 sin(l)
w w w w
A(t=+0)= 1 . (6)
-— sin(wt) 0 cog wt) 0
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For the noninfinitesimal duration of the mode coupling, ot No .
Eq. (5) can be solved numerically for a certan{(t). We e i?e'““’ N 0 e it/o
consider Gaussian, triangular, and trapezoidal coupling func- ;= , 77=i—0( ot )
tions that may exceed unity. Numerical solutions to Ej. Ao jut gt 2 \e'® 0
for suchA (t) have a tendency to grow whikg(t)>1 (strong ! ?e

coupling. Note that the strongly coupled oscillator has a

nonpositive definite potential energyq'B,(t)g. To obtain  The expressions for the blocks 7 obtained for the step-
an appropriate analytic description of the instability, we in-function coupling are rather cumbersome and are not intro-
troduce the piecewise constant coupling functip(0<t duced here.

<tg)=wj, N(t<0t>t,)=0 (step-function coupling The

solution to Eq.(5) reads lll. VARIANCES OF QUADRATURE COMPONENTS
At<t)=T.9E,-T_®F_, @) In the present section we calcuIaEe Athe Avqriances
of the quadrature component$,,=3(Q.Qu+ QuQs)
where the auxiliary matrices —(Qa)(Qp), a,b=1,...,4,which form the 4<4 real sym-
metric dispersion matrix
1 ai 1 T
g, = ( , Mpp Mgp
a,—a_ |1 -a; M= : ©)
Map Mg
coq{).t) Q. sin(Q.t) The variances obey certain restrictions, which are none other
T.= —0:tsin(Q.t) cog Q. t) than generalized uncertainty relatiof®2,23. Making the

canonical replacemert8) in Eq. (9) yields the expression

are expressed in terms of the parametefs=w?+ w2, M(t)=A"M(t=0) (AT, (10)

0% =3’ +(0* + 4wg)l/2], a,=(0%- afz)/wg, a,a_
=—1. The matricesE. satisfy the relationsZ.B,  which describes the evolution of the initial dispersion matrix
=0%E. and have the propertie®2 ===, , andE.E_  M(t=0). We specify an initial state with zero quadrature
=0. The complex numbergiQ)_ and =i}, are the char- correlations that possesses a diagonal dispersion matrix:
acteristic values of the two-dimensional classical oscillator.

As the Hamiltonian(1) is independent of time inside the M(t=0)=diag Ep,E),

interval 0<t<t,, the positive definite potential energy of

the system is the necessary and sufficient condition for the Ep:diagApl’Apz)’ qudiagAql,qu),
stability of the motion. Under the conditions of strong cou-
pling, wo>1, the potential energy has a saddle poingjat e

=0 rather than a global minimum, afd _is the imaginary ean square deviationsf the quadrature components. The
number. Therefore the classical system executes the unStat;c])leerato(rqs of the quadrature cgm onents ceage to be. statisti-
motion till t=ty. Under the conditions of weak coupling, pera 4 P )

cally independent fot>0, and nonzero covariances appear

wo=<1, the values(). are both real, the elements of the . . ) : . i
matrix A are bounded, and the classical system reveals stab[@ the d|sffc)_e_r5|on ltnatrlitﬂ(t>0/). we mtrodulc/:ze tEe_ Eorrela
ion coefficients ap = M (M ijpj) . k,j=1,2,

behavior. _ _ Mlagpy A’
The quantum integrals of the motion, which are linear inwhich describe the statistical correlation between the quadra-

the ladder operators;, &/, are constructed via a homoge- {Uré componentg; andg.. Also, quadrature squeezing may
neous canonical transformation appear provided that at least one among the dispersions

Mp,p;s Mg,q; turns out to be smaller than a corresponding
b a { 7
5l-20l3). o[

dispersionAg?h:w‘SJ/Z, Aa‘j’h= 1/(2w%) in a coherent state
: (8 |a;). (The coherent statie;) is the eigenvector of the pho-
The 4X4 symplectic matrix) consists of X2 complex
blocks £, 5. These blocks are used in Sec. V. The relation

(11)

quantitiesA,[,j and qu are the initial dispersiongor

ton annihilation operatoa; : a;|e;)= a;|a;), the eigenval-
ues «; covering the entire complex planéVe define the
squeezing coefficients ast,j=ijpj/Ag§’h and Kﬁj

Q=K TAK connects the symplectic matric&® and A, =quqj/Ag§’h, their classical values being restricted from
where below by unity.
Under the conditions of thé-function mode coupling, the
1 [—iE, iE, o2 0o matrix A(t) of the canonical transformation is given by Eq.
=_< . 1)1 sz( 1/2)_ (6), and the dispersion matriki(t=+0) consists of ele-
v2\ E,7 E, 0 o ments
The blocks¢, 5, which correspond to thé-function cou- ijpJ.:(Apj+Aqs?\3)00§(w§it)+quw2‘si sinf(wit),

pling, are (129
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Mp,p,= OEwJA sin(w%it)cog w%t), (12b)
Mgq,=(Ap +Ag A5 2% sirP(wit) +Aq coS(w’it),
(129

2

Mq1q2: _)\OJ'Zl wﬁquj Sin(w_‘sjt)c()s_(w‘sjt), (129

M =lsin(2w5n)[w* (A, +N2A, ) — wfiA, ]
9GP 2 Py 0TS 9
(128

Map, =~ Mol Aq, cog w’t)cog w’it)

—Aq % sin(w’)sin(wt)], k#j, (12f)

wheres(j)=2/j. If both K,Z)j(t=0) and Kéj(t=0) are not

less than unity, squeezing is not the césee Eqs.(12a),
(120].
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1

Mpp~ 7 €Xp(2|0_[) (| [*Aq-+A,-),
1 -2

Mgq~ 7eXp(2|0_[) (|| ?A,_+Aq-),

1 _
Mg~ Zexp(2|Q_|t)(|Q_| Ap- —Q_|Ag).
Squeezing the quantum fluctuations is impossible under such
conditions. The X2 matrix of the correlation coefficients
Fqkpj(tsto) is asymptotically equal to

. 1 -1
O )
Ap —1Q_[PAq +a%(Ap,—|Q_[?A)

B Ap +Q_[PAq + ai(Ap2+ [Q_[?Ag)

When the condition of weak coupling is fulfilled, the ei-
genvalue() _ is a real number, and the values of the quadra-
ture dispersions are bounded. Then, the two-mode quadrature

Under the conditions of step-function mode coupling, thesqueezing can occur. We treat below the thermal state of the

symplectic matrixA(t) is determined by Eq(7), and Eq.
(10) yields the dispersion matrii (0<t<t,), which con-

sists of the 2 blocks

Mpp= E

o==*

SIrP(Q, 1)
(Tr qg.+C032(Q t)A )

_(sir1(9+t)sir1((2_t)

Q;lﬂil +¢£ cos{(ht)cos(ﬂt))

X (Bq+BY), (133

SiRP(Q,t)
Maq= Zﬁ ( 02

Apst co§(Q,,t)Aq(,)

—|cogQ t)cogOQ_t)+ &

QMQ+UQWQU)
Q.0

X (Bg+By), (13b

1 Ape  Age
quZE ESII”I(ZQOI)(Q—U‘FQ]_)

(o8

o==x

+(Sin(Q_8CC1)S{Q+t)+ sin(Q;c();ios{Q_t))Bq

sin(Q2_t)cog Q. t) sin(Q t)cogQ_t)| -
+| & O + T Bq

(139

with £=(Ap,—Ap)/(Ag,—A
ces areAq(p)= = =+ Eq ==, Byp) =5+ Eq(p=-= = Bp(q) -
For wo>1 and |Q_| '<t<ty, the varianceg13) reveal
asymptotic behavior

qz); the auxiliary 2<2 matri-

coupled modes, which reproduces the temporal evolution of
the original state with a density operator

p(t=0)=p1p,, 14

pi=2 sinh Bw’ii2)exd — Bwi(a]a;+1/2)],

B! means the temperature in unit$w,w,)*2 The initial
quadrature dispersions are

Apjz(wﬁi/Z)coﬂ(Bw‘siIZ), quzApj/w25i.

The covariances of the quadrature components in the state
(14) are equal to zero. We set=2 and examine the depen-
dence of squeezing on temperaty@e! and coupling fre-
guency wg and durationty. The contour plot in Fig. ()
shows KSZ for B=1.2 versuswy andt,. Squeezing KSZ

<1) appears near the threshold of strong coupling, i.e., in

the neighborhood ofvy=~0.95, forty~5.7 andty=~8. To

flnd out the temperature effect on squeezing, we calculate
for wy=0.92 as a function oB andt, [its contour plot

is seen in Fig. ()]. It is clear that the quadrature fluctua-

tions grow while the temperature increases, and the squeez-

ing disappears for3<1l. Thus the thermal noise damps

squeezing when the temperature exceeds, w,) 2. We set

wy=0.92 and caIcuIatda(f)2 in the time domain &t,<37

up to very low(almost zerp temperaturdviz., 8~ 1=10"3).

For vanishing temperature, the thermal state turns into a cor-

related vacuum stat€€VS) |0,t), which is a common eigen-

vector of the formal operatoiisib,, blb, of the number of

photons: bTb ;|0,t)=0. The dispersion matrix of the CVS is
the same as in the correlated coherent dtate), which is a

common eigenvector of the invariant operatobt):
b; |at) al|at) |@,0)=|ay)|a,). The squeezing coeffi-
C|entK |n the thermal state decreases monotonically while
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a? (w?+|Q_[?)
<nl(t0)>~<n2(to)> 1+ o |Q,| . (16)

When wé is very large in comparison witlh 2, the values

a? and|Q_|? are close to unity and3, respectively. Then
(n1(te) Y{ny(te))~1/w?, and the larger mean photon num-
ber corresponds to the lower-frequency mode. In order to
examine that asymmetry of the two-mode photon distribution
we setw=2 for all the calculations of Sec. IV and Sec. V.

o

IV. PHOTON STATISTICS OF COUPLED MODES
IN THERMAL EQUILIBRIUM

The two-mode photon distribution function is the prob-
ability to haven, photons in the first mode amg photons in
the second mode. The desired probability is a diagonal ele-
mentF(n,t)=<n|,3|n) of the density operator of the system
under consideratiorin)=|n;)|n,), where|n;) is an eigen-
vector of the operatoa/a; : ala;|n;)=n;|n;). According to
Ref.[30], the PDF in the thermal state is expressed in terms
of a “diagonal” Hermite polynomial29] of four variables:

1] HR )
de<M+§l4” nl ) (17)

F(n,t)=

FIG. 1. Contour plot OKSZ(wO,tO,,B) for w=2: (a) B=1.2, (b)
wo=0.92. SqueezingK§2<1) is seen fort,~5.7 andt,~8 (a)
nearwy=0.95, (b) for g>1.

wheren! =n4!n,!, andn denotes a pair of hon-negative in-
tegers. The matribR=U"(1,—2M)(l,+2M)U* is de-
fined in terms of a unitary matrix

in the CCS is the case. However, in the given range of pa- U=
rameters, the minimum value &52 is not less than 0.4.

Photon statistics in both the thermal state and the CCS isatisfying the relationsUTu=UTU*=1,, U'U*=UTU
the subject of the foregoing sections. The statistical moments-3,;; 3,=0;®]I, is the four-dimensional block Pauli ma-
of the photon distribution function can be expressed in termsrix.
of the quadrature means and variances. Note that a non- The examples of the distributiqid7) presented below are
negative integem; is an eigenvalue of the operatélféj obtaiqed numericglly using the known recurrence relation for
=%(w51aj2+w_5jf)j2—1)- Hence, for the first-order aver- Hermite polynomials ofN variables(N=4 in our casg

the temperature tends to zero, and, therefore, the squeezing (—i|2 i|2>

PR P

ages, we get N
R R
1 ) . 1 ., Hil}:...,nj+l,...,nN(y)_<kzl R]kyk) Hgl},...,n ...,nN(y)
<nj>:§ w j(quqj+<Qj> )+E(ijpj+<pj> )—1/. N
(15 -2 RinH e ),
The mean numbers of photons are independent of the
guadrature correlation coefficientéBut the width of the Rl (R} N
photon distribution does depend on the correlation between Ho"=1, Ho' . 3...., (’(y):gl RjkY-
the quadraturef30].) For wy,>1 and|Q_|~1<t,, the aver-
age valueg15) are exponentially large: The photon distribution functions displayed in Fig. 2 are cal-
culated in the regimes of both strong step-function coupling,
(na(to)) wo=1.3,ty=3m/4[Figs. 2a) and 2b)], and 5function cou-
pling, A\g=4 [Figs. A¢c) and Zd)]. We analyze the behavior
exp(2[Q _[to) 2 0 2 of the PDFs at different values of the parameferWe
- 8w(a,—a_)? 1+ |Q_|? [1Q-| (a*Aqﬁqu) present the plots of the photon distributions for very low
A A temperature =103 [Figs. 2a) and Zc)] and for larger
+aAp + A +[[Q_|(a(qr)i=0+(A2)t=0) temperature3~*=1.25[Figs. 4b) and Zd)]. As is pointed
outin Sec. lll, the thermal state at low temperature is close to
+a_(Pi—ot (P2)iol?l, the CVS having the PDF vanishing for odd sumgtn,

[14,30, and the behavior of the PDFs depicted in Figs) 2
and and Zc) shows that those almost vanish for odd sums
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of strong coupling, and this anomaly of photon statistics is
not observed under th&function coupling conditions, as is
clear in Figs. Zc) and Zd). We describe the features of the
PDFs in Figs. &) and 2d) using the deformed Planck dis-
tribution formula obtained from Eq15),

— [No)?
(nj(t=+0))=n;+ ?0 cot)'(zf,sj), (18)

wheren;=[exp(Bw?)—1] ! is the usual Planck distribution
formula corresponding to the initial statd4). When the
temperature tends to zer@{ =), and\y~0O(1), one has
(n;(t= +0))~(A\o/2)2. This is the case for the parameters of
Fig. 2(c) displaying the PDF symmetric with respect to the
main diagonaln,;=n,. For larger temperature, say3
~0(1), the symmetry of the distribution is broken, as is
seen in Fig. &d). [The deformed Planck formuld8) gives
(n1)=~2.5n,).] Therefore, unlike the strong step-function
mode coupling, thes-function coupling excites the larger
FIG. 2. Photon distribution functiofr(n,,n,) in the thermal  number of photons in the higher-frequency mode. To exam-
state forw=2: (a), (b) we=1.3, ty=3m/4 (strong step-function jne this tendency, we proceed to higher temperatiges,1,

coupling, and(c), (d) Ao=4 (the &-function coupling. In (@ and  gnq retainw of the order of unity. Then, E|18) yields
() B71=10"3, in (b) and(d) B~ 1=1.25. Figure show§(n,,n,)

w25j)\2
1+ 0) >1. (19)

2

in units 10°%. w %

+n,. The distribution functions in Fig. 2 exhibit an oscilla-

tory behavior, which is less pronounced for higher temperaWhen\ > 1, the ratio of the mean numbe({t9) becomes

ture. The suppression of the oscillations is demonstrated in

Fig. 3, where the cu(0,n,) is plotted as a function g8 for (n(t=+0)) 2, 1

Ao=4. The probability to have (B,) photons at high tem- (ny(t=+0)) 1= YT W?

perature decreases proportionally&oThis is reminiscent of

the photon statistics of the squeezed correlated mixed state which, for A\q=, is nothing but the inverse of the ratio

a single-mode systeffr31]. (ny)/{n,)=1/w? corresponding to the unperturbed initial
One should note the essential difference of plots in Figsstate(14).

2(a) and Zb) from Figs. Zc) and Zd). The distributions of

photons in the strongly coupled modes have a pronounceq¢ pHOTON STATISTICS OF CORRELATED COHERENT

asymmetric character, the maxima of the distributions being STATE OF COUPLED MODES
concentrated along the, axis, which corresponds to the
lower-frequency moddEq. (16) gives (ny(to))/{(n,(to)) In the present section the distribution of the numbers of

~ 1/4]. The excitation of the relatively large photon numbersphotons in the CC$at) (see Sec. INis investigated. The
in the “red” mode occurs exclusively under the conditions tWwo-mode PDF, which follows from a generic polymode ex-
pression 23,30, reads

_
F(O,t -
F(0) F(n0= oy CHE 0t
0.10 | 20
exq—|a|2) 1 T % ¢—1 ?
008 F(O,t)ZW exps @l el

0.06 wherea= (a4 ,a,)" denotes a two-dimensional column vec-

tor with complex entriesa;=|a;|€'%, andn is a discrete
vector variable; the X2 complex matriceg and » are the
blocks of the symplectic matri® [see Eq(8)]. At the initial
time t=0, the PDF(20) is a usual two-dimensional Poisso-
nian distribution with both means and dispersions of the pho-
ton numbers equal thy;|%. Fort>0, the phase#, become
additional parameters, on which the distribution of the pho-
ton numbers depends. The PC#D) can be expanded into a
FIG. 3. The cutF(0n,) for Ag=4 as a function of. The finite sum of classicalsingle-variablg Hermite polynomials
probability of counting ((y,) photons decreases proportionally [32], and it can be shown that under the conditionsdef
to B. function mode coupling the distributiof20) is not depen-
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<n;>=(%) H(Im aj=ho Reag*+Re oy, (21

where s(j)=2/j, Req; is the real part, and Iy is the
imaginary part ofe;. For the parameters of Fig(a}, Eq.
(21) gives(ny)/(n,)=2/11. ForAo> 1, the ratio of the mean
numbers is governed by the real partsas,

(n(t=+40)) 1+4R€ a, . 8 [Im a, Rea;
(ny(t=+0)) 1+4R€ a, Ao | 1+4R€E a;
Im al Rea'2
1+4R€ a,) |’

FIG. 4. Photon distribution functioﬁ(nl,nz) in the correlated and the |arger mean number of photons Corresponds to the
coherent state(a) Ao=4 (&-function coupling, (b) @o=1.3, tc  mode with the imaginaryy;. Also, we calculate the PDF
=3m/4 (strong step-function couplinglin (c), we assume the same |\ ;nder the conditions of strongp,=1.3 [Fig. 4b)], and
parameters. as ifb), except thah)o.=0.9(weak2couplinginstead of weak, wo=0.9[Fig. 4c)], step-function couplingt, = 3/4
wo=1.3. Figure shows(ny,n;) in units 10°%, and the values of 5 chasen. Figure(®) shows the distortion of the PDF at low
parameters are =2, a; =2, a;=2i. n, and n,. Unlike that, the distribution in Fig. (4) is a
dent onw. Thus the effect of the phasés is the most clear smooth function. Both the distributions are not symmetric

under the conditions of-function mode coupling. with respect to the main diagonal =n,. Excitation of the
We consider below the distribution®0) computed for large photon numbers occurs under the conditions of strong
a1=2=—lia,. The plot in Fig. 4a) corresponds to the con- coupling, and Eq(16) gives the ratio of the mean numbers

ditions of &-function mode couplinghg=4. The PDF in Fig.  (ny(tg))/{n,(tg))~1/4.

4(a) undergoes strong oscillations and has a pronounced The coupling of the modes causes the intermode correla-
asymmetric character. Fox + 0, the mean numbers of pho- tions of the photon numbers. To study them, we employ the
tons are Glauber coherence function
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) (N1(to)n,(te)) — (N1 (te) }{Na(to)) tion of the quantum fluctuations in the strongly coupled
G(12):1+ (n1(to)Y(Na(to)) . modes is attributed to the instability of the classical two-
1E0/AT2RN0 dimensional strongly coupled oscillator, which is the classi-

Motivation for this definition can be found in Rg33]. The  cal counterpart of the quantum system under consideration.
classical values of the Glauber function are restricted fromflSo, the exponentially large mean number of photons cor-

below by unity. We calculateG(fz) for a;=2, and a, responds to either of the strongly coupled modes, and the
— a,€'?. The contour plot of the Glauber function versug mode with a lower frequency possesses the greater mean

and 6 for fixed ty=23/2 is seen in Fig. &). The nonclassi- number. On the contrary, the quadrature squeezing is estab-

cal valuesG(122)<1 are seen near the threshold of strong Cou_Ilshed in the thermal state under the conditions of weak cou-

pling (wo~1) in the neighborhood of=3/2. We take the pling for moderate te_mperature; the squeezingllzdisappears
valuesf=1.6w andwy= 1.2 corresponding to the minimum when the temperature is of order or excek(ew,)"“. The

POt two-mode PDF in the thermal state reveals oscillations,
value of G{2) in Fig. 5(a), and calculate the coherence func-

tion for various timegsee Fig. 8)]. Figure §b) demon- which decrease while the temperature grows. It is found that

trates that both classical and lassical val the PDF in the CCS of the coupled modes exhibits both
strates tha ?2) classical and nonclassical values can lz)eSciIIating and nonoscillating behavior depending on the
achieved byG}% for fixed wy and 6 in the course of the

: concrete values of parameters. The nonclassical intermode
evolution of the system. correlations of the photon numbers are detected and briefly
studied.

VI. CONCLUSION

We have discussed how the nonstationary mode coupling
affects the quantum-statistical properties of the two-mode
light. The effect of boths- and step-function coupling be-  The authors express sincere appreciation to Professor V. .
tween the quadrature componems and g, of the light Man’ko for his kind attention and fruitful discussions that
modes is investigated in detail. The conditions of weak andnade this research possible. M.E.V. expresses his particular
strong step-function coupling are distinguished. The excitaappreciation to ISSEP for the financial support.
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