The molecular dynamics calculations of an electron states density and a diffusion coefficient in energy space for ultracold strongly coupled plasma

A. A. Bobrov¹⁾, E. A. Manykin¹⁾, B. B. Zelener¹⁾, B. V. Zelener²⁾

1) Moscow Engineering Physics Institute (state university), Moscow Russia

2) Joint Institute of High Temperature, Moscow Russia

We propose a plasma model wich allows us to calculate kinetic characteristics of a twocomponent ultracold plasma using classical molecular dynamics. Electrons and protons in this model of nonequilibrium plasma are interacted by Coulomb law. In the case of electron-proton interaction and distance between particles $r < r_{cut}$ (r_{cut} is about several Bohr radii) the interaction energy is constant e^2/r_{cut} (e is the charge of electron). The motion equations in periodical boundary condition for this system has been solved by molecular dynamics method. We considered densities $n_e = n_i = 10^{10} \cdot 10^{12}$ cm⁻³, proton temperatures $T_i = 1-10$ K, electron

We considered densities $n_e=n_i=10^{10}-10^{12}$ cm⁻³, proton temperatures $T_i=1-10$ K, electron temperatures $T_e=5-30$ K.

We have calculated the electron state density in the region near the ionization threshold depending on a coupling parameter $\gamma = e^2 n^{1/3}/k_BT$. The electron state density is being described using the nearest neighbor approximation.

We have also calculated the diffusion coefficient D(E) for energy range E = $-2k_BT...+2k_BT$, depending on γ .