ELECTROCONDUCTIVITY AND PRESSURE-TEMPERATURE STATES OF STEP SHOCKED C₆₀ FULLERITE.

A.M. Molodets¹, V.V. Avdonin¹, A. N. Zhukov¹, S.N. Sidorov², V.V. Kim¹, J.M. Shulga¹,

¹Institute of Problems of Chemical Physics of Russian Academy of Science, 142432 Chernogolovka, Russia ²Institute of Solid State Physics of Russian Academy of Science, 142432 Chernogolovka, Russia

Institute of Solid State Physics of Russian Academy of Science, 142452 Chernogolovka, Russia

The complex study of electrophysical and thermodynamic properties of C_{60} single crystals under step shock loading has been done. The increase and following reduction of specific electroconductivity of C_{60} fullerite single crystals at step shock compression up to 30 GPa has been measured. The equations of state for fcc C_{60} fullerite as well as for 2D polymer C_{60} and for 3D polymer C_{60} were constructed. The pressure-temperature states of C_{60} fullerite were calculated at the step shock compression in the region up to 30 GPa and 550 K. X-ray diffraction studies of shock recovered samples have revealed the mixture of fcc C_{60} and x-ray amorphous component of fullerite C_{60} . The start of x-ray amorphous component formation is for pressure $P_m \approx 19.8$ GPa and for temperature $T_m \approx 520$ K. At pressure exceeding P_m and temperature pressure exceeding T_m the shock compressed fullerite presents itself two-phase mixture of fcc C_{60} fullerite. The electroconductivity reduction of fullerite can be explained by the percolation effect caused by the change of pressure, size and number of polymeric phase nucleuses.

This work was partly supported by the program of the Presidium Russian Academy of Sciences "Investigations of matter in extreme conditions"