MD simulation of melting and λ - transition in stoichiometric uranium dioxide

E.S.Yakub

Odessa State Economic University, Odessa, Ukraine

New version of ionic model for stoichiometric uranium dioxide, reproducing the experimental density of solid stoichiometric UO₂ in a wide range of temperatures, is developed. Results of the high-temperature MD simulation on large cells, based on a novel fast method of computation of Coulomb forces, both in solid and liquid phases are presented and discussed. Properties of liquid UO₂, computed on the basis on the same potential model, are in good agreement with existing experimental data and predictions of other theoretical models. Simulation reveals characteristic features of a pre-melting λ -transition at a temperature near to that experimentally observed (T_{λ}=2670 K). A strong deviation from the Arrhenius behavior of the oxygen self-diffusion coefficient was found near the λ -transition point.