NON-LINEAR ISOTHERMAL WAVES IN DEGENERATE ELECTRON PLASMA

Alexander E. Dubinov¹, Anna A. Dubinova²

¹ Sarov state physical and technical institute, Sarov, Nizhni Novgorod region, Russia

² Advanced School of General and Applied Physics, Lobachevsky Nizhni Novgorod State University, Nizhni Novgorod, Russia

A non-linear differential equation of oscillations of chemical potential of 1D stationary wave in a degenerate neutralized electron gas is derived, analyzed and solved exactly. It is found that a phase velocity of wave is bounded below by a critical value $V_{\rm crit}$. Exact formula of the $V_{\rm crit}$ is

$$V_{\rm crit} = \sqrt{\frac{kT}{m} \frac{{\rm Li}_{3/2} \left(-\exp{\frac{\mu_0}{kT}}\right)}{{\rm Li}_{1/2} \left(-\exp{\frac{\mu_0}{kT}}\right)}},\tag{1}$$

where $\text{Li}_{v}(x)$ is the polylogarithm. The V_{crit} runs to known value for a cold electron Fermi-gas $V_{\text{crit}} = \sqrt{2\mu_0/3m}$ at $\mu_0/kT \to \infty$. It would seem that the V_{crit} runs to the $V_{\text{crit}} = \sqrt{kT/m}$ for an isothermal classic gas at $\mu_0/kT \to 0$. But we have found another limit:

$$V_{\rm crit} = \sqrt{\frac{kT}{m}} \sqrt{-\frac{1}{\sqrt{2}} \frac{\zeta(3/2)}{\zeta(1/2)}} \approx 1.1246856 \sqrt{\frac{kT}{m}}, \qquad (2)$$

where $\zeta(x)$ is the Riemann zeta-function. Obtained 12% difference from classic plasma is explained very easy: there is not a limiting transfer which transforms the Fermi-Dirac distribution to the Maxwell one if the Pauli principle is kept in action.

Profiles of the wave are calculated. They are different from harmonic waves.

A.E.D. is supported by a grant of Government of Nizhni Novgorod region (contract # 16).

1. *Kuzelev M.V., Rukhadze A.A.* Methods of wave theory in media with dispersion. M.: Fizmatlit. 2007.