ЯВЛЯЕТСЯ ЛИ ПАР ЦЕЗИЯ ВБЛИЗИ ЛИНИИ КОНДЕНСАЦИИ ПЛАЗМОЙ?

О.Д. Захарова, Н.П. Петкогло, А.М. Семёнов Московский энергетический институт (Технический университет)

1. Почти 40 лет назад в Институте высоких температур АН СССР под руководством проф. Э.И. Асиновского методом ослабления потока γ -излучения были выполнены измерения плотности цезия в необычайно широком диапазоне температур (770–2470 К) и давлений (2–22 МПа), который охватывает состоянии газа, жидкости и сверхкритического флюида, включая критическую область [1, 2]. Проанализировав полученные экспериментальные данные, авторы пришли к выводу, что пар цезия вблизи линии насыщения заметно ионизован.

В самом деле: рассчитанные по результатам измерений значения сжимаемости

$$z = p\mu/\rho RT \tag{1}$$

(T -температура, p -давление, $\rho -$ плотность, $\mu -$ атомная масса Cs, R -универсальная газовая постоянная) в рассматриваемой области параметров состояния оказались большими 1 — см. табл. 1 (в таблице p_s — упругость насыщенного пара).

Таблица 1. Аномально высокие значения сжимаемости *z* пара цезия по данным [1, 2]

Данные [1, 2]				Справочник [9]		
Т, К	<i>р</i> , МПа	Z	p/p_s	p_s , МПа	Z	
1673	1.96	1.10	0.404	4.85	0.887	
1723	1.96	1.13	0.351	5.59	0.898	
1773	1.96	1.26	0.301	6.38	0.907	
1923	3.92	1.09	0.431	9.09	0.854	
1973	3.90	1.17	0.387	10.07	0.950	
2173*	5.88	1.01	0.498**	_	0.853	

* $T > T_{\kappa p}$

******p / p_{кр}

Известно, однако, что термодинамическое поведение «обычных» реальных газов в докритической области параметров состояния определяется в основном силами притяжения между молекулами. С физической точки зрения очевидно, что при этом величина z должна быть заметно меньше 1. Сказанное тем более справедливо применительно к пару цезия. В самом деле: данные [1, 2] об этом веществе, представленные в табл. 1, получены при давлениях, которые ниже давления насыщенного пара p_s . К тому же из атомов цезия в результате их сильного притяжения, как известно, образуется значительное количество димеров

$$2Cs \leftrightarrow Cs_2. \tag{2}$$

Как предсказывает теория и подтверждает эксперимент, сжимаемость «обычных» веществ становится большей 1 в результате существенного влияния сил межмолекулярного отталкивания, которое начинает преобладать только в состояниях жидкости и плотного сверхкритического флюида.

Напрашивается следующий вполне очевидный вывод: «аномальные», т.е. превышающие 1, значения сжимаемости рассматриваемого вещества могут наблюдаться для указанных в табл. 1 температур и давлений только как результат образования в паре цезия частиц, которые вносят дополнительный вклад в давление, но не меняют плотность газа. Такими частицами могут быть только электроны. Именно к этому выводу и пришли авторы [1, 2].

2. В самом деле: сформулируем простейшую, но вполне адекватную модель термодинамического поведения подобной системы, которая описывает только силы притяжения между атомами, приводящие к образованию димеров (2):

$$2A \leftrightarrow A_2. \tag{3}$$

Пусть n_A и n_{A_2} — концентрации атомов (мономеров) и димеров, m_A — масса атома,

$$m_{\rm A_2} = 2 \, m_{\rm A} \tag{4}$$

— масса димера. Тогда плотность такого газа

$$\rho = m_{\rm A} n_{\rm A} + m_{\rm A_2} n_{\rm A_2} = m_{\rm A} (n_{\rm A} + 2 n_{\rm A_2}). \tag{5}$$

Если газ достаточно разрежен, то в соответствии с законом Дальтона

$$p = nk_B T; \quad n = (n_A + n_{A_2}) \tag{6}$$

 $(k_B$ — постоянная Больцмана). Подставляя в (1) соотношения (5) и (6) и учитывая, что $\mu = m_A N_A$, $R = k_B N_A$, где N_A — число Авогадро, получим следующее выражение для сжимаемости газа:

$$z = (n_{\rm A} + n_{\rm A_2})/(n_{\rm A} + 2n_{\rm A_2}).$$
(7)

Из (7) ясно, что сжимаемость рассматриваемой системы находится в пределах от ¹/₂ (все мономеры ассоциированы в димеры) до 1 (полная диссоциация молекул на атомы).

Рассмотрим теперь на основе столь же простой модели однократно ионизованную плазму, в которой протекает реакция ионизации нейтральных частиц A с образованием ионов A⁺ и электронов е

$$A \leftrightarrow A^+ + e. \tag{8}$$

Пусть при данных температуре и давлении концентрации указанных частиц равны соответственно n_A , n_{A^+} и n_e . Плотность плазмы:

$$\rho = m_{\rm A} n_{\rm A} + m_{{\rm A}^+} n_{{\rm A}^+} + m_{\rm e} n_{\rm e}.$$
(9)

Поскольку массы частиц (8) связаны соотношением

$$m_{A^+} = m_A - m_e,$$
 (10)

выражение (9) принимает вид

$$\rho = m_{\rm A} (n_{\rm A} + n_{{\rm A}^+}) + m_{\rm e} (n_{\rm e} - n_{{\rm A}^+}). \tag{11}$$

Но вследствие электронейтральности плазмы

$$n_{\rm e} = n_{\rm A^+} \,. \tag{12}$$

С учётом (12) формула для подсчёта плотности плазмы (11) принимает вид

$$\rho = m_{\rm A} (n_{\rm A} + n_{{\rm A}^+}). \tag{13}$$

Давление, создаваемое плазмой (8) в интересующей нас области температур и давлений в рамках используемой модели также с достаточной точностью следует закону Дальтона,

$$p = nk_B T;$$
 $n = (n_A + n_{A^+} + n_e).$ (14)

Подставляя (13) и (14) в (1), с учётом условия электронейтральности (12) получим формулу для расчёта сжимаемости рассматриваемой плазмы:

$$z = (n_{\rm A} + 2n_{\rm e})/(n_{\rm A} + n_{\rm e}).$$
 (15)

Из (15) видно, что $z \ge 1$. Когда ионизации нет ($n_e = 0$), z = 1. В полностью ионизованной плазме ($n_A = 0$) z = 2.

3. Запишем теперь соотношения, определяющие в рамках рассмотренной выше модели термодинамическое поведение системы, в которой одновременно протекают реакции как образования димеров (3), так и ионизации (8). Её плотность подсчитывается по формуле

$$\rho = m_{\rm A} (n_{\rm A} + 2n_{\rm A_2} + n_{\rm e}), \tag{16}$$

давление определяется законом Дальтона

$$p = (n_{\rm A} + n_{\rm A_2} + 2n_{\rm e})k_B T, \tag{17}$$

а сжимаемость получим, подставив (16) и (17) в (1):

$$z = (n_{\rm A} + n_{\rm A_2} + 2n_{\rm e})/(n_{\rm A} + 2n_{\rm A_2} + n_{\rm e}).$$
(18)

Результат подсчёта сжимаемости по формуле (18) будет большим 1 в отсутствие димеризации, но меньшим 1 в отсутствие ионизации. При наличии обоих процессов (3), (8) знак z - 1 определяется «конкуренцией» этих процессов.

Следовательно, поскольку образование димеров из атомов цезия в рассматриваемой области параметров состояния, как уже было сказано, происходит весьма интенсивно, то для того, чтобы сжимаемость (18) оказалась заметно больше 1, как в табл. 1, степень ионизации пара цезия должна быть весьма высокой.

4. Наконец, нетрудно обобщить проведенные выкладки на случай, когда из атомов образуются не только димеры (3), но и любые j – атомные кластеры A_j :

$$j\mathbf{A} \leftrightarrow \mathbf{A}_j; \quad j \ge 2.$$
 (19)

При этом формулы (16–18) примут вид:

$$p = (n_{\rm A} + \sum_{j \ge 2} n_j + 2n_{\rm e}) k_B T;$$
(20)

$$\rho = m_{\rm A} \left(n_{\rm A} + \sum_{j \ge 2} j n_j + n_{\rm e} \right);$$
(21)

$$z = (n_{\rm A} + \sum_{j \ge 2} n_j + 2n_{\rm e}) / (n_{\rm A} + \sum_{j \ge 2} jn_j + n_{\rm e}),$$
(22)

где n_i — концентрация j – мера A_i.

Соотношения между концентрациями частиц, фигурирующими в (20– 22), определяются уравнениями химического равновесия реакций образования нейтральных кластеров (19)

$$n_j = K_j(T) n_A^j; \tag{23}$$

и равновесия реакции ионизации (8)

$$n_{\rm A^+} = K(T) n_{\rm A} (n_{\rm e})^{-1},$$
 (24)

где $K_j(T)$ и K(T) — соответствующие константы равновесия. Исключая с помощью (23), (24) из (20) n_j и $n_e = n_{A^+}$, можно решить полученное уравнение относительно n_A при данных температуре и давлении. Затем, подставив найденное значение $n_A(T,p)$ в (23), (24), найдём концентрации частиц $n_j(T,p)$ и $n_e(T,p)$. Наконец, подставив эти величины в (21), подсчитаем плотность системы $\rho(T,p)$ или по (22) вычислим сжимаемость z(T,p). Аналогично, исключая n_j и n_e из (21), подсчитаем концентрацию мономеров $n_A(T,\rho)$, концентрации нейтральных частиц $n_j(T,\rho)$ и электронов $n_e(T,\rho)$, а затем давление $p(T,\rho)$ и сжимаемость $z(T,\rho)$ системы при заданных температуре и плотности.

Для описания состава рассматриваемой системы удобно ввести мольные доли компонентов:

$$x_{\rm A} = n_{\rm A} / n;$$
 $x_j = n_j / n;$ $x_{\rm e} = n_{\rm e} / n;$ $n = n_{\rm A} + \sum_{j \ge 2} n_j + n_{\rm A^+} + n_{\rm e};$ (25)

$$x_{\rm A} + \sum_{j \ge 2} j x_j + x_{\rm e} + x_{\rm A^+} = 1; \quad x_{\rm e} = x_{\rm A^+}.$$
 (26)

Формула для сжимаемости (22) с учётом (25) приобретёт простой вид:

$$z = 1/(x_{\rm A} + \sum_{j \ge 2} j x_j + x_{\rm e}).$$
(27)

Как видно из (26), (27), при отсутствии ионизации $(x_e = 0) \ z \le 1$, а если отсутствуют кластеры A_j $(x_j = 0)$, то, наоборот $z \ge 1$. При наличии всех обсуждаемых процессов знак z - 1 определяется конкуренцией между ними.

5. Несколько усложнив рассмотренную схему, в рамках той же модели можно при необходимости учесть образование многоатомных положительно и отрицательно заряженных кластеров A_j^+ и A_j^- , а также многократно заряженных ионов.

6. Хорошо известно, что рассматриваемую модель можно использовать как эффективное средство вычисления термодинамических свойств неидеальных химически реагирующих газов. С этой целью нужно просто заменить в соотношениях (23) константы равновесия $K_i(T)$ групповыми интегралами $b_i(T)$, а концентрацию мономеров n_A — активностью газа ζ . Для учёта ионизации такой системы на практике вполне достаточно использовать соотношение (24), подсчитывая величину K(T) по обычной формуле Саха. При этом вклады высоковозбуждённых электронных состояний атома и иона в статистические суммы можно просто отбросить, а снижение энергии ионизации оценить каким-либо простейшим способом. Использование более строгой теории неидеальной плазмы на фоне других источников погрешности модели было бы в подобных условиях явным превышением точности расчёта.

7. Описанную выше расчётную схему, учитывающую влияние как неидеальности пара цезия, так и его ионизации, можно было бы попытаться применить для описания экспериментальных данных [1, 2]. Однако прежде авторы попытались выяснить, насколько согласуются эти данные с результатами измерений плотности пара цезия, которые получены другими авторами. Характеристики имеющегося экспериментального материала приведены в табл. 2. Данные [3–5, 7, 8] обобщены в таблицах справочника [9].

Для решения поставленной задачи авторы использовали малоконстантное полуэмпирическое уравнение состояние, формально учитывающее образование кластеров A₂, A₃ и A₄, а фактически — взаимодействия между двумя, тремя и четырьмя атомами. Второй групповой

интеграл $b_2(T)$ был рассчитан теоретически с использованием прецизионных спектроскопических данных о взаимодействии двух атомов цезия. Чтобы совместно описать этим уравнением состояния наиболее представительные данные [3, 9*] с погрешностью эксперимента, потребовалось всего 4 «подгоночных» параметра. Среднеквадратичное отклонение составило 1%.

Несколько модифицировав это уравнение состояния для возможности его применения в околокритической области и добавив ещё два «подгоночных» параметра, авторы сумели совместно описать все данные, представленные в табл. 2, со среднеквадратичным отклонением 2%.

Исключение составляют лишь данные [1, 2]. В области малых и умеренных плотностей для их описания вполне достаточно уравнения состояния с 4 «подгоночными» параметрами. Однако среднеквадратичное отклонение составляет при этом 18%, а оценки параметров получаются такими, что систематические расхождения данных [1, 2] с остальными достигают 40%. При этом ни в одной из имеющихся экспериментальных работ, указанных в табл. 2, не получены значения сжимаемости пара цезия, превышающие 1, что иллюстрируют данные табл. 3.

Расхождения результатов измерений [1, 2] с табличными данными справочника [9] иллюстрирует материал, представленный в табл. 1.

	Диапазон		Диапазон		Диапазон		Число	Погреш-
Ссылка	темпер	оатуры,	давл	давления, плотности,		юсти,	экспе-	ность
]	К	МПа		$\kappa\Gamma/M^3$		римент.	данных,
	МИН.	макс.	МИН.	макс.	МИН.	макс.	«точек»	%
[1]	773	2473	1.96	12.75	10.0	1620	?	3–5
[2]	773	2473	1.96	21.49	14.0	1654	_	4–10
[2]*	1423	2423	1.96	10.78	30.0	136.0	_	4–10
[3]	981	1684	0.11	3.37	2.0	41.4	158	0.3
[4]	1818	2168	6.88	12.57	91.4	227.2	10	?
[4*]	1818	2168	6.88	6.93	91.4	92.2	9	?
[5]	1366	1940	1.48	5.20	?	?	29	0.7
[6]	1645	2117	3.24	8.89	39.8	101.8	21	0.9
[7]	1366	1940	1.48	5.20	20.2	62.1	29	0.65
[8]	1366	2514	1.48	13.83	20.2	159.2	96	0.28
[9]	1366	2513	1.48	13.83	20.2	159.2	99	0.5-0.8
[9*]	1366	2349	1.48	9.61	20.2	83.9	71	0.5-0.8

Таблица 2. Экспериментальные данные о плотности пара цезия

Примечание 1. Критические параметры цезия по оценке [1]: 2040±20 К, 11.8±1.0 МПа, 440±50 кг/м³.

Примечание 2. 2*, 4*, 9* — сокращенные данные, использованные для оценок четырёх параметров малоконстантного полуэмпирического УС.

Таблица 3. Сравнение результатов измерений сжимаемости пара цезия, полученных в работах [1, 2], с близкими данными других авторов

Ссылки	Т, К	р, МПа	Z
[1, 2]	1673	1.96	1.10
[3]	1642	2.14	0.862
[3]	1639	2.58	0.833
[9]	1545	2.38	0.838
[9]	1619	2.58	0.830
[9]	1629	2.61	0.827
[9]	1637	2.63	0.827
[1, 2]	1723	1.96	1.13
[3]	1668	2.64	0.833
[9]	1698	2.68	0.827
[9]	1705	2.84	0.828
[1, 2]	1773	1.96	1.26
[9]	1763	3.03	0.832
[9]	1793	3.14	0.839
[9]	1809	3.20	0.846
[1, 2]	1923	3.92	1.09
[6]	1858	3.87	0.818
[9]	1873	3.40	0.859
[1, 2]	1973	3.90	1.17
[6]	1858	3.87	0.818
[6]	2026	4.37	0.832
[1, 2]	2173	5.88	1.01
[9]	2080	6.13	0.808
[9]	2117	6.33	0.815

Примечание. В справочнике [9] представлены первичные экспериментальные данные МАИ [3–5, 7, 8].

8. Используя представленную выше расчётную схему, авторы попытались оценить, возможна ли в принципе в паре цезия при приведенных в табл. 1 и 3 параметрах состояния такая степень ионизации, которая бы обеспечила полученные в [1, 2] значения сжимаемости. С этой целью использовались групповые интегралы цезия, которые были получены для

совместного описания данных $[3, 9^*]$ с помощью упоминавшегося выше малоконстантного уравнения состояния. Учитывалось образование однократно заряженных одноатомных ионов [8]. Константа равновесия ионизации подсчитывалась по формуле Саха. Статистические суммы атома и иона цезия принималась равными статистическим весам основных электронных уровней (2 и 1 соответственно). В табл. 4 приведены результаты этого расчёта: мольные электронов x_e и сжимаемость газа.

Таблица 4. Результаты расчёта сжимаемости пара цезия для параметров состояния из табл. 1.

<i>Т</i> , К	<i>р</i> , МПа	Без учёта	Энергия ионизации		Работа выхода	
		ионизации	$I/k_B = 45186.7 \text{ K}$		$E/k_B = 30000 \text{ K}$	
		Z	x _e	Z	x _e	Z
1673	1.96	0.879215	2.19 10 ⁻⁵	0.879242	$1.93 \cdot 10^{-3}$	0.881601
1723	1.96	0.894172	$3.43 \cdot 10^{-5}$	0.894214	$2.66 \cdot 10^{-3}$	0.897391
1773	1.96	0.900779	$5.08 \cdot 10^{-5}$	0.900840	$3.48 \cdot 10^{-3}$	0.904955
1923	3.92	0.840594	$1.04 \cdot 10^{-4}$	0.840731	$5.12 \cdot 10^{-3}$	0.847351
1973	3.90	0.853231	$1.46 \cdot 10^{-4}$	0.853421	$6.49 \cdot 10^{-3}$	0.861699
2173	5.88	0.825474	$3.79 \cdot 10^{-4}$	0.825987	$1.18 \cdot 10^{-2}$	0.841681

Как видно из табл. 4, влияние ионизации на сжимаемость пара цезия оказывается совершенно ничтожной, что является общеизвестным фактом. Для того чтобы в результате ионизации сжимаемость пара цезия оказалась такой, как в табл. 1, требуется мольная доля электронов $x_e \approx 0.1 - 0.3$ — см. (26), т.е. степень ионизации должна быть выше на 3–4 порядка.

Теоретики [10] полагают, что такой эффект может быть достигнут, если в результате ионизации образуются достаточно крупные заряженные кластеры A_i^+ :

$$j\mathbf{A} \leftrightarrow \mathbf{A}_{j}^{+} + \mathbf{e}; \quad j \ge 2.$$
 (28)

В самом деле: энергетический эффект реакции (28) меньше, чем «просто» реакции ионизации атома (8). Ясно, однако, что он не может быть меньше, чем работа выхода электрона из металлического цезия: такого предела энергия реакции (28) достигнет только при $j \ge 10^3$. Достаточно ли этого, чтобы объяснить данные [1, 2]?

Чтобы получить принципиальный ответ на этот вопрос, мы повторили расчёт сжимаемости пара цезия с учётом ионизации, просто заменив в

формуле Саха (24) энергию ионизации атома энергией выхода электрона. Очевидно, что в рамках решаемой задачи результат этого расчёта может рассматриваться как предельная оценка влияния ионизации на сжимаемость пара цезия. В самом деле: ещё большей степени термической ионизации не может быть ни при каких условиях (речь не идёт об «ионизации давлением», т.е. «выдавливании» электронов из электронных оболочек атомов, что не имеет никакого отношения к рассматриваемой задаче).

Результаты такого расчёта представлены в табл. 4. Видно, что степень ионизации выросла «всего» на два порядка, и для достижения нужного эффекта не хватает ещё двух порядков, которые взять уже просто неоткуда.

Заметим, что если бы вместо реакции ионизации атома (8) была рассмотрена реакция с образованием кластера A_j^+ (28), оценка величины x_e изменилась бы, возможно, в несколько раз (впрочем, заранее трудно сказать, в какую сторону), но, во всяком случае, не на два порядка.

9. Таким образом, экспериментальные данные [1, 2] в диапазоне температур и давлений, соответствующем табл. 1 и 3, следует признать недостоверными и непригодными для анализа вопроса о влиянии ионизации на термодинамическое поведение пара цезия. Причина, очевидно, состоит в том, что использованный авторами метод измерения плотности предполагает, что доля потока гамма–излучения, поглощаемая исследуемым веществом, заметно превосходит поглощение материалом ампулы, в которую заключено вещество. Естественно, что для измерений низких плотностей это условие не выполняется, и погрешность их результатов становится недопустимо высокой.

Сделанный вывод, разумеется, ни в какой мере не относится к полученным в рассматриваемом эксперименте превосходным данным о плотности жидкого и плотного газообразного цезия, включая окрестность критической точки.

Работа выполнена при поддержке Гранта Президента № МК-3613.2005.8 и Российского фонда фундаментальных исследований (проект № 05-08-01244 а).

СПИСОК ЛИТЕРАТУРЫ

1. Коршунов Ю.С., Сенченков А.П., Асиновский Э.И. и др. Измерение *p*-*v*-*T* зависимости для цезия при высоких температурах и давлениях и оценка параметров критической точки // ТВТ. 1970. Т. 8. № 6. С. 1288.

2. *Коршунов Ю.С., Ветчинин С.П., Сенченков А.П. и др.* Некоторые термодинамические свойства цезия при высоких температурах и давлениях // ТВТ. 1975. Т. 13. № 3. С. 517.

3. *Stone J.P., Ewing C.T., Spann J.R. et al.* High Temperature *PVT* Properties of Sodium, Potassium, and Cesium // J. Chem. Eng. Data. 1966. V. 11. № 3. P. 309.

4. *Eving C.T., Spann J.R., Stone J.P. et al.* Pressure–Volume–Temperature Relationships for Cesium Vapor // J. Chem. Eng. Data. 1971. V. 16. № 1. P. 27.

5. Воляк Л.Д., Челебаев А.К. Экспериментальное исследование параметров *PVT* пара цезия // ТВТ. 1976. Т. 14. № 4. С. 913.

6. *Гурьянова Л.П.* Экспериментальное исследование *pvT* – свойств пара цезия при высоких температурах и давлениях. В кн.: Тематический сборник научных трудов института. Вып. 420. М.: МАИ, 1977. С. 52.

7. Варгафтик Н.Б., Воляк Л.Д., Анисимов В.М. и др. Термодинамические свойства цезия и калия при высоких давлениях и температурах // ИФЖ. 1980. Т. 39. № 6. С. 986.

8. Варгафтик Н.Б., Воляк Л.Д., Степанов В.Г. и др. Термодинамические свойства пара цезия при высоких температурах // ТВТ. 1985. Т. 23. № 4. С. 692.

9. Vargaftik N.B., Voljak L.D., Stepanov V.G. Thermodynamic Properties of Cesium in the Gaseous Phase. In: Handbook of Thermodynamic and Transport Properties of Alcali Metals / Ed. Ohse R.W. IUPAC chemical data series № 30. – Oxford, UK: Blackwell Sci. Publ., 1985. P. 641.

10. *Жуховицкий Д.И*. Неидеальная кластерная плазма // ТВТ. 1994. Т. 32. № 3. С. 459 – 474.