NPP-2008

ВЫСОКТЕМПЕРАТУРНАЯ И НИЗКОТЕМПЕРАТУРНАЯ ХИМИЧЕСКИЕ МОДЕЛИ ПЛОТНОЙ ПЛАЗМЫ ПАРОВ МЕТАЛЛОВ

Хомкин А.Л., Шумихин А.С.

Теоретический отдел им Л.М. Бибермана Объединенный институт высоких температур РАН

alhomkin@mail.ru

EXPERIMENTAL INVESTIGATION OF THERMAL LOSSES IN A PLASMA CLOSED-VESSEL

Pierre Noiret Department of applied and theoretical physics Atomic energy commission/DAM-Ile-de-France Arpajon / France

Цель работы:

Создание химической модели плотной плазмы сложного состава.

Конкретный объект исследования – плазма паров металлов

Много компонент, есть эксперимент, важно с общенаучной и прикладной точки зрения:

$$\beta F = -\sum_{k} N_{k} \ln \frac{eV\Sigma_{k}}{N_{k}\lambda_{k}^{3}} - \sum_{k} Z_{k}^{2}N_{k}\Delta f(N_{k}) - \frac{N_{i}N_{a}}{V}B_{ia}(T) - \frac{N_{e}N_{a}}{V}B_{ea}(T)$$

$$V_{ia}^{P}(r) = -\frac{\alpha_{D}e^{2}}{2r^{4}}$$

$$B_{ia}^{L}(T) = 4\pi \int_{0}^{\infty} r^{2} dr \left[\exp(-\beta V_{ia}^{P}(r) \frac{\Gamma\left(\frac{3}{2}, -\beta V_{ia}^{P}(r)\right)}{\Gamma\left(\frac{3}{2}\right)} - 1 \right]$$

$$B_{ia}^{L}(T) = 4\pi C_{1} \left(\frac{\alpha e^{2}\beta}{2}\right)^{3/4}, C_{1} = 1.61$$

$$V_{qa}^{R}(r) = -\frac{\alpha_{D}e^{2}}{2(r^{2} + r_{0}^{2})^{2}} \qquad r_{0}^{4} = \frac{\alpha_{D}a_{B}}{2Z^{1/3}}$$

$$B_{qa}^{R}(T) = -4\pi \int_{0}^{\infty} \beta V_{qa}^{R}(T) r^{2} dr$$

$$V_{ia}(r) = A\left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{4}\right]$$

$$A = 3\sqrt{3} D_{m^+}/2$$

$$\sigma = a_B \left(\frac{2\alpha_D R y}{3\sqrt{3}D_{m^+}} \right)$$

$$B_{ia}(T) = 4\pi \int_{0}^{\sigma} r^{2} dr \left[\exp(-\beta V_{ia}(r) - 1) \right] + 4\pi \int_{\sigma}^{\infty} r^{2} dr \left[\exp(-\beta V_{ia}(r) - \frac{\Gamma(3/2, -\beta V_{ia}(r))}{\Gamma(3/2)} - 1 \right]$$

$$B_{ea}(T) = \lambda_e^3 \frac{1}{\pi} \int_0^\infty \sum_l (2l+1) \frac{d\delta_l}{dp} \exp(-\frac{\beta p^2}{2m_e}) dp$$

$$ctg\delta_0(p) = -\frac{\sqrt{2m_e\varepsilon}}{p}$$
 $B_{ea}(T) = \frac{\lambda_e^3}{2}(1 - \Phi(\sqrt{\beta\varepsilon})\exp(\beta\varepsilon))$

 $B_{ea}(T) = \lambda_e^2 L$

$$L = a_B \sqrt{Ry/\varepsilon}$$

$$k_{B}T \ll 2.8eV$$

$$k_B T > 2.8 eV$$

$$B_{ea}^{R}(T) = -4\pi \int_{0}^{\infty} \beta V_{ea}^{R}(T) r^{2} dr$$

$$B_{ea}^{RH}(T) = 4\pi \int_{0}^{\infty} r^{2} dr \left[\exp(-\beta V_{ea}^{R}(r) \frac{\Gamma\left(\frac{3}{2}, -\beta V_{ea}^{R}(r)\right)}{\Gamma\left(\frac{3}{2}\right)} - 1 \right]$$

БД

$$\beta \Delta \mu_{Z_k} = -\ln \left(1 + Z_k^2 \frac{\widetilde{\Gamma}_D}{2} \right),$$
$$\beta \Delta \mu_e = -\ln \left(1 + \frac{\widetilde{\Gamma}_D}{2} \right),$$

$$\beta \Delta P = -\frac{\widetilde{\Gamma}_D}{6} \sum_k \frac{Z_k^2 n_k}{1 + Z_k^2 \widetilde{\Gamma}_D / 2},$$

$$\beta \Delta \mu_{Z_k} = -Z_k^2 \frac{\Gamma}{2},$$
$$\beta \Delta \mu_e = -\frac{\Gamma}{2},$$

$$\beta \Delta P = -\frac{\Gamma}{6} \sum_{k} Z_{k}^{2} n_{k},$$

$$\widetilde{\Gamma}_D^2 = 4\pi \left(\beta e^2\right)^3 \sum_k \frac{Z_k^2 n_k}{1 + Z_k^2 \widetilde{\Gamma}_D / 2}.$$

$$\Gamma^2 = 4\pi \left(\beta e^2\right)^3 \sum_k Z_k^2 n_k$$

Зависимость сопротивления от внутренней энергии при $V/V_0 = 9$

$$\beta F = -N_e \ln \frac{2eV}{N_e \lambda_e^3} - N_i \ln \frac{eV}{N_i \lambda_i^3} - N_a \ln \frac{eV\Sigma_a}{N_a \lambda_a^3} - \sum_{n=2}^6 N_n \ln \frac{eV\Sigma_n}{N_n \lambda_n^3} - \sum_{n=2}^6 N_n^+ \ln \frac{eV\Sigma_n^+}{N_n^+ \lambda_n^3},$$

$$\Sigma_n = \exp(\beta D_n) Z_{rot} Z_{vib} \exp(\beta \varepsilon_n),$$

$$Z_{rot} = \frac{(2k_BT)^{3/2} (\pi I_1 I_2 I_3)^{1/2}}{\sigma \hbar^3},$$

$$Z_{vib} = \prod_{j=1}^{3i-6} \frac{1}{1 - \exp(-\beta\omega_j)},$$

FIG. 1. Equilibrium geometries for neutral, single-, and double-ionized Al clusters. Ground-state spin multiplicities and some relevant interatomic distances are indicated.

TABLE I. Ionization potentials for (neutral) Al_{2-6} clusters. All values are in eV.

Cluster size					
	Al_2	Al_3	Al₄	Als	Al_6
		Experimen	tal values ^a		
Cox	6.0-6.42	6.42-6.5	6.5-7.87	6.42-6.5	6.0-6.42
Jarrold	5.6	6.3	6.4	6.5	6.7
Hanley	5.2	5.9	6.1	6.0	6.2
		Theoretic	al values		
Upton ^a	6.02	6.31	6.46	5.57	6.55
This work					
adiabatic	6.08	6.49	6.05	6.42	6.48
vertical	5.85	5.89	5.91	5.66	6.33

^aFrom Table III in Ref. 2.

TABLE II. Atomization energies (in eV) of neutral and charged Al clusters for the lowest-energy equilibrium configurations.

n	Al _n	Al_n^+	Al _n ²⁺
2	1.702	1.696	-0.769
3	4.011	3.588	-6.889
4	5.734	5.757	0.104
5	8.722	8.371	3.765
6	11.605	11.199	6.566

PHYSICAL REVIEW B

VOLUME 49, NUMBER 24

15 JUNE 1994-II

Stability of charged aluminum clusters

Ana Martínez and Alberto Vela Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534 México, Distrito Federal 09340 Mexico (Received 8 February 1994) Table 1. Atomization energies and bond distances of Al clusters

n		A_n	A_n^+	
	D_n	r_e	D_n	r_e
2	1.702	2.5	1.696	3.3
3	4.011	2.5	3.588	2.7
4	5.734	2.8	5.757	3.4
5	8.722	2.7	8.371	2.8
6	11.065	2.7	11.199	2.7

Table 2. Principal moments of inertia of Al clusters

n	2	3	4	5	6
I_1 I_2 I_3	${1/2} {1/2} {0}$	${1/2} {1/2} {1/2} {1}$	1 1 1	7/5 7/5 2	$\begin{array}{c} 2\\ 2\\ 2\end{array}$

n	3	4	5	6
ω_1	3/2	1	1	1
ω_2	3/2	1	3	1
ω_3	3	2	3	1.13
ω_4	-	2	1.178	1.13
ω_{5}	-	2	1.178	1.228
ω_6	-	4	1.178	1.228
ω_7	-	-	8.489	2.124
ω_8	-	-	8.489	2.124
ω_9	-	-	8.489	3.5
ω_{10}	-	-	-	9.772
ω_{11}	-	-	-	11.245
ω_{12}	-	-	-	11.245

 Table 3. Characteristic oscillating frequencies of Al clusters

Composition of neutral clusters vs density along isotherm T=3000 K

Состав плазмы цезия на изобаре 0,01 атм (нейтральные частицы)

Состав плазмы цезия на изобаре 0,01 атм (заряженные частицы)

Состав плазмы цезия на изобаре 1 атм (нейтральные частицы)

Состав плазмы цезия на изобаре 1 атм (заряженные частицы)

Зависимость проводимости от температуры (расчет по Гоголева и др.)

 $\sigma,\left(\Omega^{\ast}m\right) ^{^{-1}}$

Давление насыщенных паров,

состав и проводимость паров цезия

на бинодали

Т, К

Зависимость проводимости от температуры вдоль бинодали

СПАСИБО ЗА ВНИМАНИЕ